Coupled incompressible Smoothed Particle Hydrodynamics model for continuum-based modelling sediment transport

Abstract A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.

[1]  Songdong Shao,et al.  Incompressible SPH flow model for wave interactions with porous media , 2010 .

[2]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[3]  Christian Ulrich,et al.  Multi-physics SPH simulation of complex marine-engineering hydrodynamic problems , 2013 .

[4]  Mario Gallati,et al.  SPH Simulation of Sediment Flushing Induced by a Rapid Water Flow , 2012 .

[5]  Yee-Chung Jin,et al.  Improved Multiphase Lagrangian Method for Simulating Sediment Transport in Dam-Break Flows , 2016 .

[6]  Jidong Zhao,et al.  Coupled CFD–DEM simulation of fluid–particle interaction in geomechanics , 2013 .

[7]  B. Rogers,et al.  State-of-the-art of classical SPH for free-surface flows , 2010 .

[8]  Pierre-Yves Lagrée,et al.  The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology , 2011, Journal of Fluid Mechanics.

[9]  Pourya Omidvar,et al.  Simulation of violent water flows over a movable bed using smoothed particle hydrodynamics , 2017 .

[10]  Anirban Dhar,et al.  Modeling free-surface flow in porous media with modified incompressible SPH , 2016 .

[11]  Jidong Zhao,et al.  A coupled CFD-DEM analysis of granular flow impacting on a water reservoir , 2014 .

[12]  L. Minatti,et al.  A SPH model for the simulation of free surface granular flows in a dense regime , 2015 .

[13]  Hitoshi Gotoh,et al.  Turbulence particle models for tracking free surfaces , 2005 .

[14]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[15]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[16]  Hwung-Hweng Hwung,et al.  Three-dimensional numerical modeling of the interaction of dam-break waves and porous media , 2012 .

[17]  Malika Ouriemi,et al.  Sediment dynamics. Part 1. Bed-load transport by laminar shearing flows , 2009, Journal of Fluid Mechanics.

[18]  Songdong Shao,et al.  Numerical study of PPE source term errors in the incompressible SPH models , 2015 .

[19]  R. D. Felice,et al.  The voidage function for fluid-particle interaction systems , 1994 .

[20]  Anirban Dhar,et al.  A Robust volume conservative divergence-free ISPH framework for free-surface flow problems , 2016 .

[21]  Kun Luo,et al.  Heat transfer and erosion mechanisms of an immersed tube in a bubbling fluidized bed: A LES–DEM approach , 2016 .

[22]  Xudong Fu,et al.  Incompressible SPH scour model for movable bed dam break flows , 2015 .

[23]  M. Naaim,et al.  Numerical simulations of granular free-surface flows using smoothed particle hydrodynamics , 2011 .

[24]  Olivier Pouliquen,et al.  A constitutive law for dense granular flows , 2006, Nature.

[25]  M. H. Kazeminezhad,et al.  Euler–Euler two-phase flow simulation of tunnel erosion beneath marine pipelines , 2011 .

[26]  Abbas Yeganeh-Bakhtiary,et al.  Lagrangian coupling two-phase flow model to simulate current-induced scour beneath marine pipelines , 2012 .

[27]  Benedict D. Rogers,et al.  Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU) , 2016 .

[28]  Murray Rudman,et al.  Comparative study on the accuracy and stability of SPH schemes in simulating energetic free-surface flows , 2012 .

[29]  M. Adams,et al.  Discrete particle-continuum fluid modelling of gas–solid fluidised beds , 2002 .

[30]  Michael Fairweather,et al.  Fully coupled LES-DEM of particle interaction and agglomeration in a turbulent channel flow , 2015, Comput. Chem. Eng..

[31]  Abbas Yeganeh-Bakhtiary,et al.  Euler–Lagrange Two-Phase Model for Simulating Live-Bed Scour Beneath Marine Pipelines , 2013 .

[32]  É. Guazzelli,et al.  Sediment dynamics. Part 2. Dune formation in pipe flow , 2009, Journal of Fluid Mechanics.

[33]  Yves Zech,et al.  Small-scale laboratory dam-break waves on movable beds , 2007 .

[34]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[35]  Rui Xu,et al.  Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..

[36]  Tibing Xu,et al.  Modeling free-surface flows of granular column collapses using a mesh-free method , 2016 .

[37]  Cuong T. Nguyen,et al.  A new SPH-based approach to simulation of granular flows using viscous damping and stress regularisation , 2017, Landslides.

[38]  Ha H. Bui,et al.  Numerical simulation of soil-water interaction using smoothed particle hydrodynamics (SPH) method , 2007 .

[39]  Jean-Pierre Vilotte,et al.  Spreading of a granular mass on a horizontal plane , 2004 .

[40]  Mostafa Safdari Shadloo,et al.  Simulation of single mode Rayleigh–Taylor instability by SPH method , 2013 .

[41]  T. B. Anderson,et al.  Fluid Mechanical Description of Fluidized Beds. Equations of Motion , 1967 .

[42]  M. Medale,et al.  A three-dimensional numerical model for incompressible two-phase flow of a granular bed submitted to a laminar shearing flow , 2010 .

[43]  Yee-Chung Jin,et al.  A mesh-free particle model for simulation of mobile-bed dam break , 2011 .

[44]  Marc Medale,et al.  A three-dimensional numerical model for dense granular flows based on the µ(I) rheology , 2014, J. Comput. Phys..

[45]  J. Bonet,et al.  Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations , 1999 .

[46]  Arne Bøckmann,et al.  Incompressible SPH for free surface flows , 2012 .