Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy.

Parity violation (PV) effects in chiral molecules have so far never been experimentally observed. To take up this challenge, a consortium of physicists, chemists, theoreticians, and spectroscopists has been established and aims at measuring PV energy differences between two enantiomers by using high-resolution laser spectroscopy. In this article, we present our common strategy to reach this goal, the progress accomplished in the diverse areas, and point out directions for future PV observations. The work of André Collet on bromochlorofluoromethane (1) enantiomers, their synthesis, and their chiral recognition by cryptophanes made feasible the first generation of experiments presented in this article.

[1]  Christian Chardonnet,et al.  Long-distance frequency transfer over an urban fiber link using optical phase stabilization , 2008, 0807.1882.

[2]  L. Barron True and false chirality and parity violation , 1986 .

[3]  V. Letokhov On difference of energy levels of left and right molecules due to weak interactions , 1975 .

[4]  Quack,et al.  Influence of parity violating weak nuclear potentials on vibrational and rotational frequencies in chiral molecules , 2000, Physical review letters.

[5]  G. Wagnière On Chirality and the Universal Asymmetry: Reflections on Image and Mirror Image , 2007 .

[6]  Laurence D. Barron,et al.  True and false chirality and absolute asymmetric synthesis , 1986 .

[7]  G. Wagnire On Chirality and the Universal Asymmetry , 2007 .

[8]  Christian Chardonnet,et al.  High-resolution optical frequency dissemination on a telecommunications network with data traffic. , 2009, Optics letters.

[9]  R. Berger,et al.  Ab initio calculation of parity-violating chemical shifts in NMR spectra of chiral molecules. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[10]  D. Rein,et al.  Calculation of the parity nonconserving energy difference between mirror‐image molecules , 1980 .

[11]  U. Meierhenrich Amino Acids and the Asymmetry of Life , 2013, European Review.

[12]  A. Passalacqua,et al.  Parity Violation Energy Of Biomolecules – I: Polypeptides , 2005, Origins of Life and Evolution of Biospheres.

[13]  M. Quack On the measurement of the parity violating energy difference between enantiomers , 1986 .

[14]  Low energy tests of the weak interaction , 2004, hep-ph/0404291.

[15]  D. Rein Some remarks on parity violating effects of intramolecular interactions , 1974, Journal of Molecular Evolution.

[16]  P. Soulard,et al.  Influence of the geometry of a hydrogen bond on conformational stability: a theoretical and experimental study of ethyl carbamate. , 2009, Physical chemistry chemical physics : PCCP.

[17]  Zhengjin Jiang,et al.  Gas-chromatographic separation of tri(hetero)halogenomethane enantiomers. , 2005, Chirality.

[18]  P. Schwerdtfeger,et al.  Recent experimental and theoretical developments towards the observation of parity violation (PV) effects in molecules by spectroscopy. , 2005, Organic & biomolecular chemistry.

[19]  W. Herrmann,et al.  On the way to chiral epoxidations with methyltrioxorhenium(VII) derived catalysts , 2004 .

[20]  L. Nafie,et al.  Subtle chirality in oxo- and sulfidorhenium(v) complexes. , 2009, Chemical communications.

[21]  P. Schwerdtfeger,et al.  Large parity-violation effects in heavy-metal-containing chiral compounds. , 2003, Angewandte Chemie.

[22]  J. Dutasta,et al.  Search for resolution of chiral fluorohalogenomethanes and parity-violation effects at the molecular level. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  P. Schwerdtfeger,et al.  Calculation of parity-violation effects for the C-F stretching mode of chiral methyl fluorides , 2002 .

[24]  P. Schwerdtfeger,et al.  Parity-violation effects in the C-F stretching mode of heavy-atom methyl fluorides. , 2003, Physical review letters.

[25]  V. Chebotayev,et al.  The resonance of two-photon absorption in separated optical fields , 1976 .

[26]  J. Demaison,et al.  Chlorofluoroiodomethane as a potential candidate for parity violation measurements. , 2006, Physical chemistry chemical physics : PCCP.

[27]  G. M. Jones,et al.  Precision measurement of the weak mixing angle in Møller scattering. , 2005, Physical review letters.

[28]  P. Schwerdtfeger,et al.  Biomolecular Homochirality and Electroweak Interactions. I. The Yamagata Hypothesis , 2003 .

[29]  M. Quack Structure and Dynamics of Chiral Molecules , 1989 .

[30]  D. Amabilino Chirality at the Nanoscale , 2009 .

[31]  A. Barra,et al.  Possible Observation of Parity Nonconservation by High-Resolution NMR , 1988 .

[32]  P. Schwerdtfeger,et al.  Search for Electroweak Interactions in Amino Acid Crystals. II. The Salam Hypothesis , 2003 .

[33]  J. T. F. and,et al.  Diastereoselective Synthesis and Electronic Asymmetry of Chiral Nonracemic Rhenium(V) Oxo Complexes Containing the Hydrotris(1-pyrazolyl)borate Ligand , 2000 .

[34]  D. Deamer,et al.  Unexpected Differences between D- and L- Tyrosine Lead to Chiral Enhancement in Racemic Mixtures Dedicated to the memory of Prof. Shneior Lifson – A great liberal thinker. , 2002, Origins of life and evolution of the biosphere.

[35]  A Amy-Klein,et al.  Long-distance frequency dissemination with a resolution of 10(-17). , 2005, Physical review letters.

[36]  Christian Chardonnet,et al.  Stability of the proton-to-electron mass ratio. , 2008 .

[37]  K. Hornberger,et al.  Hund's paradox and the collisional stabilization of chiral molecules. , 2008, Physical review letters.

[38]  Martin Quack,et al.  High-resolution spectroscopic studies and theory of parity violation in chiral molecules. , 2008, Annual review of physical chemistry.

[39]  F. Hund Zur Deutung der Molekelspektren. III. , 1927 .

[40]  J. Dixon,et al.  Kinetics and mechanism of oxygen atom abstraction from a dioxo-rhenium(VII) complex. , 2002, Inorganic chemistry.

[41]  P. Schwerdtfeger,et al.  Structures, inversion barriers, and parity violation effects in chiral SeOXY molecules (X,Y = H, F, Cl, Br, or I). , 2009, The Journal of chemical physics.

[42]  T. Roisnel,et al.  Synthesis and vibrational circular dichroism of enantiopure chiral oxorhenium(V) complexes containing the hydrotris(1-pyrazolyl)borate ligand. , 2006, Inorganic chemistry.

[43]  W. Herrmann,et al.  Chiral monomeric organorhenium(VII) and organomolybdenum(VI) compounds as catalysts for chiral olefin epoxidation reactions , 2005 .

[44]  Chen Ning Yang,et al.  Question of Parity Conservation in Weak Interactions , 1956 .

[45]  P. Cintas,et al.  From parity to chirality: chemical implications revisited† , 2000 .

[46]  W. Thiel,et al.  Multiple bonds between main-group elements and transition metals. 113. Simple and efficient synthesis of methyltrioxorhenium(VII): a general method , 1992 .

[47]  P. Schwerdtfeger,et al.  Relativistic second-order many-body and density-functional theory for the parity-violation contribution to the C-F stretching mode in CHFClBr , 2005 .

[48]  Y Yamagata,et al.  A hypothesis for the asymmetric appearance of biomolecules on earth. , 1966, Journal of theoretical biology.

[49]  Norman F. Ramsey,et al.  A Molecular Beam Resonance Method with Separated Oscillating Fields , 1950 .

[50]  W. Bonner,et al.  Parity violation and the evolution of biomolecular homochirality. , 2000, Chirality.

[51]  J. Briggs,et al.  Absolute Configuration of Bromochlorofluoromethane from Molecular Dynamics Simulation of Its Enantioselective Complexation by Cryptophane-C , 1997 .

[52]  P. Schwerdtfeger,et al.  NWHClI: a small and compact chiral molecule with large parity-violation effects in the vibrational spectrum. , 2010, Angewandte Chemie.

[53]  Hans Primas,et al.  Mathematical and Philosophical Questions in the Theory of Open and Macroscopic Quantum Systems , 1990 .

[54]  L. Barron,et al.  Time reversal and molecular properties. , 2001, Accounts of chemical research.

[55]  E. Arimondo,et al.  Observation of inverted infrared lamb dips in separated optical isomers , 1977 .

[56]  M. Ziskind,et al.  Improved sensitivity in the search for a parity-violating energy difference in the vibrational spectrum of the enantiomers of CHFClBr , 2002 .

[57]  R. A. Harris,et al.  Superpositions of Handed Wave Functions , 1995, Science.

[58]  V. Letokhov,et al.  Narrow resonances of saturated absorption of the asymmetrical molecule CHFCiBr and the possibility of weak current detection in molecular physics , 1976 .

[59]  P. Schwerdtfeger,et al.  The vibrational spectrum of camphor from ab initio and density functional theory and parity violation in the C–C*–CO bending mode , 2004 .

[60]  L. Keszthelyi Possibilities to measure the parity-violating energy difference , 1995 .

[61]  L. Stodolsky,et al.  Quantum beats in optical activity and weak interactions , 1978 .

[62]  J. Demaison,et al.  The chiral molecule CHClFI: first determination of its molecular parameters by Fourier transform microwave and millimeter-wave spectroscopies supplemented by ab initio calculations. , 2005, The journal of physical chemistry. A.

[63]  R. Butcher,et al.  Two-photon Ramsey fringes at 30 THz referenced to an H maser/Cs fountain via an optical-frequency comb at the 1-Hz level , 2004, IEEE Journal of Quantum Electronics.

[64]  L. Barron,et al.  Absolute Configuration of Bromochlorofluoromethane from Experimental and Ab Initio Theoretical Vibrational Raman Optical Activity , 1997 .

[65]  Energetic stabilization of d-camphor via weak neutral currents. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  G. Pályi,et al.  Progress in biological chirality , 2004 .

[67]  P. Cintas The Origin of Chirality in the Molecules of Life .A Revision from Awareness to the Current Theories and Perspectives of this Unsolved Problem. Von Albert Guijarro und Miguel Yus. , 2009 .

[68]  D. Amabilino Chirality at the nanoscale : nanoparticles, surfaces, materials and more , 2009 .

[69]  P. Schwerdtfeger,et al.  Parity nonconservation contribution to the nuclear magnetic resonance shielding constants of chiral molecules: a four-component relativistic study. , 2006, The Journal of chemical physics.

[70]  R. Berger Parity-Violation Effects in Molecules , 2004 .

[71]  Laerdahl,et al.  Theoretical analysis of parity-violating energy differences between the enantiomers of chiral molecules , 2000, Physical review letters.

[72]  A. Amann Chirality: A superselection rule generated by the molecular environment? , 1991 .

[73]  P. Schwerdtfeger,et al.  Relativistic coupled-cluster study of the parity-violation energy shift of CHFClBr , 2010 .

[74]  A. V. Zelewsky Stereochemistry of coordination compounds , 1996 .

[75]  R. Berger Molecular parity violation in electronically excited states , 2003 .

[76]  A. Barra,et al.  Parity non-conservation and NMR observables. calculation of Tl resonance frequency differences in enantiomers , 1986 .

[77]  P. Schwerdtfeger,et al.  SeOClI: A promising candidate for the detection of parity violation in chiral molecules , 2008 .

[78]  C. Bordé,et al.  LIMIT ON THE PARITY NONCONSERVING ENERGY DIFFERENCE BETWEEN THE ENANTIOMERS OF A CHIRAL MOLECULE BY LASER SPECTROSCOPY , 1999 .

[79]  P. Schwerdtfeger The Search for Parity Violation in Chiral Molecules , 2010 .

[80]  P. Schwerdtfeger,et al.  Chiral oxorhenium(V) complexes as candidates for the experimental observation of molecular parity violation: a structural, synthetic and theoretical study. , 2010, Physical chemistry chemical physics : PCCP.

[81]  Christel M. Marian,et al.  A mean-field spin-orbit method applicable to correlated wavefunctions , 1996 .

[82]  P. Schwerdtfeger,et al.  Large parity violation effects in the vibrational spectrum of organometallic compounds. , 2004, Journal of the American Chemical Society.

[83]  W. Herrmann,et al.  Alkylrhenium Oxides from Perrhenates: A New, Economical Access to Organometallic Oxide Catalysts , 1997 .

[84]  Thomas R. Doyle,et al.  Bromochlorofluoromethane and deuteriobromochlorofluoromethane of high optical purity , 1989 .

[85]  M. Quack,et al.  Parity Violation Dominates the Dynamics of Chirality in Dichlorodisulfane. , 2001, Angewandte Chemie.

[86]  C. Crestini,et al.  A novel and efficient catalytic epoxidation of olefins with adducts derived from methyltrioxorhenium and chiral aliphatic amines , 2008 .

[87]  D. D. Hoppes,et al.  Experimental Test of Parity Conservation in Beta Decay , 1957 .

[88]  A. Amy-Klein,et al.  Towards a First Observation of Molecular Parity Violation by Laser Spectroscopy , 2006 .

[89]  M. Quack,et al.  Combined multidimensional anharmonic and parity violating effects in CDBrClF , 2003 .

[90]  H. Amouri,et al.  Chirality in Transition Metal Chemistry: Molecules, Supramolecular Assemblies and Materials , 2008 .

[91]  Trond Saue,et al.  An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. , 2007, The Journal of chemical physics.

[92]  Martin Quack,et al.  How important is parity violation for molecular and biomolecular chirality? , 2002, Angewandte Chemie.

[93]  A. Soncini,et al.  Parity-violating contributions to nuclear magnetic shielding , 2003 .

[94]  P. Lazzeretti,et al.  Parity-violation effect on vibrational spectra , 2003 .