Transport measurement of Landau level gaps in bilayer graphene with layer polarization control.

Landau level (LL) gaps are important parameters for understanding electronic interactions and symmetry-broken processes in bilayer graphene (BLG). Here we present transport spectroscopy measurements of LL gaps in double-gated suspended BLG with high mobilities in the quantum Hall regime. By using bias as a spectroscopic tool, we measure the gap Δ for the quantum Hall (QH) state at filling factors ν = ±4 and -2. The single-particle Δ(ν=4) scales linearly with magnetic field B and is independent of the out-of-plane electric field E⊥. For the symmetry-broken ν = -2 state, the measured values of Δ(ν=-2) are ∼1.1 meV/T and 0.17 meV/T for singly gated geometry and dual-gated geometry at E⊥ = 0, respectively. The difference between the two values arises from the E⊥. dependence of Δ(ν=-2), suggesting that the ν = -2 state is layer polarized. Our studies provide the first measurements of the gaps of the broken symmetry QH states in BLG with well-controlled E⊥ and establish a robust method that can be implemented for studying similar states in other layered materials.

[1]  J. Trbovic,et al.  Spin symmetry of the bilayer graphene ground state , 2012, 1212.5918.

[2]  K. Shepard,et al.  Evidence for a spin phase transition at charge neutrality in bilayer graphene , 2012, Nature Physics.

[3]  Z. Meng,et al.  Antiferromagnetism in the Hubbard model on the Bernal-stacked honeycomb bilayer. , 2012, Physical review letters.

[4]  M. Kharitonov Edge excitations of the canted antiferromagnetic phase of the ν = 0 quantum Hall state in graphene: A simplified analysis , 2012, 1206.0724.

[5]  V. Cvetkovic,et al.  Electronic multicriticality in bilayer graphene , 2012, 1206.0288.

[6]  Fan Zhang,et al.  Competing ordered states in bilayer graphene , 2012, 1205.5532.

[7]  V. A. Miransky,et al.  Coexistence and competition of nematic and gapped states in bilayer graphene , 2012, 1204.2286.

[8]  B. Roy Theory of integer quantum Hall effect in insulating bilayer graphene , 2012, 1203.6340.

[9]  V. Fal’ko,et al.  Competing nematic, antiferromagnetic, and spin-flux orders in the ground state of bilayer graphene , 2012, 1203.4608.

[10]  J. Maan,et al.  Transport gap in suspended bilayer graphene at zero magnetic field , 2012, 1202.1753.

[11]  C. Varma,et al.  Ordered Loop Current States in Bilayer Graphene , 2012, 1202.0821.

[12]  V. A. Miransky,et al.  Broken symmetry ν=0 quantum Hall states in bilayer graphene: Landau level mixing and dynamical screening , 2012, 1201.4872.

[13]  J. Maan,et al.  Field-induced quantum Hall ferromagnetism in suspended bilayer graphene , 2011, 1112.5368.

[14]  C. Honerkamp,et al.  Instabilities of interacting electrons on the honeycomb bilayer , 2011, 1112.5038.

[15]  O. Vafek,et al.  Fermions on bilayer graphene: Symmetry breaking for B=0 and ν=0 , 2011, 1111.2076.

[16]  M. Kharitonov Antiferromagnetic state in bilayer graphene , 2011, 1109.1553.

[17]  C. N. Lau,et al.  Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. , 2011, Nature nanotechnology.

[18]  K. Novoselov,et al.  Interaction-Driven Spectrum Reconstruction in Bilayer Graphene , 2011, Science.

[19]  V. A. Miransky,et al.  Broken-symmetry states and phase diagram of the lowest Landau level in bilayer graphene , 2011, 1108.0650.

[20]  Fan Zhang,et al.  Distinguishing spontaneous quantum Hall states in bilayer graphene. , 2011, Physical review letters.

[21]  M. Kharitonov Canted antiferromagnetic phase of the ν=0 quantum Hall state in bilayer graphene. , 2011, Physical review letters.

[22]  C. Schönenberger,et al.  Spontaneously gapped ground state in suspended bilayer graphene. , 2011, Physical review letters.

[23]  E. Tutuc,et al.  Spin-polarized to valley-polarized transition in graphene bilayers at ν=0 in high magnetic fields. , 2011, Physical review letters.

[24]  Lei Jing,et al.  Magnetoconductance oscillations and evidence for fractional quantum Hall states in suspended bilayer and trilayer graphene. , 2010, Physical review letters.

[25]  A. MacDonald,et al.  Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. , 2010, Physical review letters.

[26]  Jeil Jung,et al.  Lattice theory of pseudospin ferromagnetism in bilayer graphene: Competing interaction-induced quantum Hall states , 2010, 1010.1819.

[27]  A. Yacoby,et al.  Broken-Symmetry States in Doubly Gated Suspended Bilayer Graphene , 2010, Science.

[28]  Y. Barlas,et al.  Orbital and interlayer skyrmion crystals in bilayer graphene , 2010, 1010.0364.

[29]  A. Morpurgo,et al.  Topological origin of subgap conductance in insulating bilayer graphene , 2010, 1009.4851.

[30]  A. Yacoby,et al.  Local compressibility measurements of correlated states in suspended bilayer graphene. , 2010, Physical review letters.

[31]  R. Nandkishore,et al.  Quantum anomalous Hall state in bilayer graphene , 2010, 1009.0497.

[32]  O. Vafek Interacting fermions on the honeycomb bilayer: From weak to strong coupling , 2010, 1008.1901.

[33]  C. Tőke,et al.  Spontaneous symmetry breaking and Lifshitz transition in bilayer graphene , 2010, 1006.1399.

[34]  V. A. Miransky,et al.  Dynamics and phase diagram of the ν=0 quantum Hall state in bilayer graphene , 2010, 1004.2068.

[35]  Y. Barlas,et al.  Orbital order in bilayer graphene at filling factor ν = − 1 , 2010, 1003.5679.

[36]  P. Kim,et al.  Symmetry breaking in the zero-energy Landau level in bilayer graphene. , 2009, Physical review letters.

[37]  A. Yacoby,et al.  Broken-Symmetry States and Divergent Resistance in Suspended Bilayer Graphene , 2009, 0909.2883.

[38]  W. Bao,et al.  Electrical transport in high-quality graphene pnp junctions , 2009, 0907.3366.

[39]  Kun Yang,et al.  Many-body instability of Coulomb interacting bilayer graphene: Renormalization group approach , 2009, 0906.2483.

[40]  H. Min,et al.  Spontaneous inversion symmetry breaking in graphene bilayers , 2009, 0907.2448.

[41]  R. Asgari,et al.  Fermi velocity enhancement in monolayer and bilayer graphene , 2009, 0902.1230.

[42]  M. Fuhrer,et al.  Massless and massive particle-in-a-box states in single- and bi-layer graphene , 2009, 0901.4157.

[43]  K. Shizuya Pseudo-zero-mode Landau levels and collective excitations in bilayer graphene , 2009, 0901.2803.

[44]  C. N. Lau,et al.  Fabrication of graphene p-n-p junctions with contactless top gates , 2008, 0804.2513.

[45]  Y. Barlas,et al.  Intra-Landau-level cyclotron resonance in bilayer graphene. , 2008, Physical review letters.

[46]  P. Kim,et al.  Cyclotron resonance in bilayer graphene. , 2008, Physical review letters.

[47]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[48]  Marco Polini,et al.  Pseudospin magnetism in graphene , 2007, 0707.1530.

[49]  Eduardo V. Castro,et al.  Gaped graphene bilayer: disorder and magnetic field effects , 2007, 0711.3479.

[50]  F. Guinea,et al.  Electronic states and Landau levels in graphene stacks , 2006, cond-mat/0604396.

[51]  A. Geim,et al.  Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene , 2006, cond-mat/0602565.

[52]  V. Fal’ko,et al.  Landau-level degeneracy and quantum Hall effect in a graphite bilayer. , 2005, Physical review letters.

[53]  P. McEuen,et al.  Scanned potential microscopy of edge and bulk currents in the quantum Hall regime , 1998, cond-mat/9811143.

[54]  D. Thouless The Quantum Hall Effect , 1998 .