Spin Wave Normalization Toward All Magnonic Circuits

The key enabling factor for Spin Wave (SW) technology utilization for building ultra low power circuits is the ability to energy efficiently cascade SW basic computation blocks. SW Majority gates, which constitute a universal gate set for this paradigm, operating on phase encoded data are not input output coherent in terms of SW amplitude. Thus, their cascading requires information representation conversion from SW to voltage and back, which is by no means energy effective. In this paper, a novel conversion free SW gate cascading scheme is proposed that achieves SW amplitude normalization by means of a directional coupler. After introducing the normalization concept, we utilize it in the implementation of three simple circuits and, to demonstrate its bigger scale potential, of a 2-bit inputs SW multiplier. The proposed structures are validated by means of the Object Oriented Micromagnetic Framework (OOMMF) and GPU-accelerated Micromagnetics (MuMax3). Furthermore, we assess the normalization induced energy overhead and demonstrate that the proposed approach consumes <inline-formula> <tex-math notation="LaTeX">$1.25 \times $ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$1.5 \times $ </tex-math></inline-formula> less energy when compared with the transducers based conventional counterpart. Finally, we introduce a normalization based SW 2-bit inputs multiplier design and compare it with functionally equivalent SW transducer based and 16nm CMOS designs. Our evaluation indicates that the proposed approach provided <inline-formula> <tex-math notation="LaTeX">$1.34 \times $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$6.25 \times $ </tex-math></inline-formula> energy reductions when compared with the conventional approach and 16nm CMOS counterpart, respectively, which demonstrates that our proposal is energy effective and opens the road towards the full utilization of the SW paradigm potential and the development of SW only circuits.

[1]  Y. Otani,et al.  Voltage-Controlled Reconfigurable Spin-Wave Nanochannels and Logic Devices , 2018 .

[2]  Kang L. Wang,et al.  Feasibility study of logic circuits with a spin wave bus , 2007, Nanotechnology.

[3]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[4]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[5]  A. Thean,et al.  Design and benchmarking of hybrid CMOS-Spin Wave Device Circuits compared to 10nm CMOS , 2015, 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO).

[6]  B. Leven,et al.  Spin-wave logic devices based on isotropic forward volume magnetostatic waves , 2015, 1503.04101.

[7]  Baker Mohammad,et al.  Modeling and Optimization of Memristor and STT-RAM-Based Memory for Low-Power Applications , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  Csaba Andras Moritz,et al.  DESIGN OF SPIN WAVE FUNCTIONS-BASED LOGIC CIRCUITS , 2012 .

[9]  T. Gilbert A phenomenological theory of damping in ferromagnetic materials , 2004, IEEE Transactions on Magnetics.

[10]  S. James Allen,et al.  Cross Junction Spin Wave Logic Architecture , 2014, IEEE Transactions on Magnetics.

[11]  Yande Jiang,et al.  On Basic Boolean Function Graphene Nanoribbon Conductance Mapping , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  David J. Lilja,et al.  Direct communication between magnetic tunnel junctions for nonvolatile logic fan-out architecture , 2010 .

[13]  D. Mamaluy,et al.  The fundamental downscaling limit of field effect transistors , 2015 .

[14]  Ewout W. Steyerberg,et al.  Big Data and Predictive Analytics: Recalibrating Expectations , 2018, JAMA.

[15]  Sang-Koog Kim,et al.  Conceptual design of spin wave logic gates based on a Mach–Zehnder-type spin wave interferometer for universal logic functions , 2008 .

[16]  Christoph Adelmann,et al.  First experimental demonstration of a scalable linear majority gate based on spin waves , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[17]  Pavol Krivosik,et al.  Hamiltonian formulation of nonlinear spin-wave dynamics: Theory and applications , 2010 .

[18]  Dmitri E. Nikonov,et al.  Static and Clocked Spintronic Circuit Design and Simulation With Performance Analysis Relative to CMOS , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Abdulqader Mahmoud,et al.  Fan-out enabled spin wave majority gate , 2020, AIP Advances.

[20]  Kang L. Wang,et al.  A Three-Terminal Spin-Wave Device for Logic Applications , 2008, 0810.5589.

[21]  Fernando Corinto,et al.  Nonlinear Dynamics of Memristor Oscillators , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  M. Kostylev,et al.  Realization of spin-wave logic gates , 2007, 0711.4720.

[23]  Said F. Al-Sarawi,et al.  Memristor-Based Hardware Accelerator for Image Compression , 2018, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[24]  A. Khitun,et al.  Prime factorization using magnonic holographic devices , 2016 .

[25]  J. Swerts,et al.  Time-resolved spin-torque switching in MgO-based perpendicularly magnetized tunnel junctions , 2016, 1602.00894.

[26]  Weisheng Zhao,et al.  Rectified Tunnel Magnetoresistance Device With High On/Off Ratio for In-Memory Computing , 2020, IEEE Electron Device Letters.

[27]  Kang L. Wang,et al.  Nano-scale computational architectures with spin wave bus , 2005 .

[28]  Christoph Adelmann,et al.  Experimental prototype of a spin-wave majority gate , 2016, ArXiv.

[29]  Israel Koren,et al.  Towards logic functions as the device , 2010, 2010 IEEE/ACM International Symposium on Nanoscale Architectures.

[30]  B. Leven,et al.  Design of a spin-wave majority gate employing mode selection , 2014, 1408.3235.

[31]  Rudy Lauwereins,et al.  Non-volatile spin wave majority gate at the nanoscale , 2016, ArXiv.

[32]  Weisheng Zhao,et al.  Skyrmion-Based Ultra-Low Power Electric-Field-Controlled Reconfigurable (SUPER) Logic Gate , 2019, IEEE Electron Device Letters.

[33]  Qiang Zhang,et al.  Reconfigurable Magnetic Logic Combined with Nonvolatile Memory Writing , 2017, Advanced materials.

[34]  A. A. Nikitin,et al.  Logic gates based on multiferroic microwave interferometers , 2017, 2017 11th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMCCompo).

[35]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .

[36]  Ramin Rajaei,et al.  Nonvolatile Low-Cost Approximate Spintronic Full Adders for Computing in Memory Architectures , 2020, IEEE Transactions on Magnetics.

[37]  M. Kostylev,et al.  Spin-wave logical gates , 2005 .

[38]  Philipp Pirro,et al.  Reconfigurable nanoscale spin-wave directional coupler , 2018, Science Advances.

[39]  Ying-Yu Chen,et al.  Schottky-barrier-type Graphene Nano-Ribbon Field-Effect Transistors: A study on compact modeling, process variation, and circuit performance , 2013, 2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[40]  Alexandr V. Sadovnikov,et al.  Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes , 2015 .

[41]  M. Beleggiaa,et al.  On the magnetostatic interactions between nanoparticles of arbitrary shape , 2004 .

[42]  Kang L. Wang,et al.  Non-volatile magnonic logic circuits engineering , 2010, 1012.4768.

[43]  A. Serga,et al.  Magnonic crystals for data processing , 2017, 1702.06701.

[44]  Dmitri E. Nikonov,et al.  Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking , 2013, Proceedings of the IEEE.

[45]  Mario Carpentieri,et al.  Excitation of propagating spin waves in ferromagnetic nanowires by microwave voltage-controlled magnetic anisotropy , 2016, Scientific Reports.

[46]  Baker Mohammad,et al.  An Efficient Heterogeneous Memristive xnor for In-Memory Computing , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[47]  Jeongmin Hong,et al.  Reconfigurable Skyrmion Logic Gates. , 2018, Nano letters.

[48]  Ji-Young Kim,et al.  Spin Wave Logic Circuit on Silicon Platform , 2008, Fifth International Conference on Information Technology: New Generations (itng 2008).

[49]  Fernando Corinto,et al.  Memristor Circuits: Flux—Charge Analysis Method , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[50]  Paul D. Franzon,et al.  International Roadmap of Devices and Systems 2017 Edition: Beyond CMOS chapter. , 2018 .

[51]  Yiran Chen,et al.  SPINBIS: Spintronics-Based Bayesian Inference System With Stochastic Computing , 2019, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[52]  A. Khitun Multi-frequency magnonic logic circuits for parallel data processing , 2011, 1105.4671.

[53]  Said Hamdioui,et al.  2-Output Spin Wave Programmable Logic Gate , 2020, 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

[54]  A. Serga,et al.  Magnon transistor for all-magnon data processing , 2014, Nature Communications.

[55]  Robert K. Henderson,et al.  A 3×3, 5µm pitch, 3-transistor single photon avalanche diode array with integrated 11V bias generation in 90nm CMOS technology , 2010, 2010 International Electron Devices Meeting.

[56]  Andrei Slavin,et al.  Collective spin-wave excitations in a two-dimensional array of coupled magnetic nanodots , 2012 .

[57]  Georg Woltersdorf,et al.  Nonlinear spin-wave excitations at low magnetic bias fields , 2014, Nature Communications.

[58]  Alexandr V. Sadovnikov,et al.  Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes , 2017 .

[59]  Giovanni De Micheli,et al.  Majority Logic Synthesis for Spin Wave Technology , 2014, 2014 17th Euromicro Conference on Digital System Design.

[60]  Leon O. Chua,et al.  Dynamic Behavior of Coupled Memristor Circuits , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[61]  Said Hamdioui,et al.  n-bit Data Parallel Spin Wave Logic Gate , 2020, 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[62]  Ronald Tetzlaff,et al.  Nonlinear Dynamics of a Locally-Active Memristor , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[63]  S. Hamdioui,et al.  Why is CMOS scaling coming to an END? , 2008, 2008 3rd International Design and Test Workshop.

[64]  P. Pirro,et al.  Spin Pinning and Spin-Wave Dispersion in Nanoscopic Ferromagnetic Waveguides. , 2018, Physical review letters.

[65]  D. Grundler,et al.  Magnonics , 2010 .

[66]  J. Pearson,et al.  Realization of a spin-wave multiplexer , 2014, Nature Communications.

[67]  Farshad Moradi,et al.  LAS-NCS: A Laser-Assisted Spintronic Neuromorphic Computing System , 2019, IEEE Transactions on Circuits and Systems II: Express Briefs.