Solid Electrolyte: the Key for High‐Voltage Lithium Batteries

A solid-state high-voltage (5 V) lithium battery is demonstrated to deliver a cycle life of 10 000 with 90% capacity retention. Furthermore, the solid electrolyte enables the use of high-voltage cathodes and Li anodes with minimum side reactions, leading to a high Coulombic efficiency of 99.98+%.

[1]  Yong Yang,et al.  Recent progress in research on high-voltage electrolytes for lithium-ion batteries. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  Jung-Hyun Kim,et al.  Challenges and approaches for high-voltage spinel lithium-ion batteries. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  H. Yamasaki,et al.  Dielectric Modification of 5V‐Class Cathodes for High‐Voltage All‐Solid‐State Lithium Batteries , 2014 .

[4]  G. Sahu,et al.  Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4 , 2014 .

[5]  Seokgwang Doo,et al.  A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte , 2014 .

[6]  Karim Zaghib,et al.  Spinel materials for high-voltage cathodes in Li-ion batteries , 2014 .

[7]  Yong Yang,et al.  Promoting long-term cycling performance of high-voltage Li2CoPO4F by the stabilization of electrode/electrolyte interface , 2014 .

[8]  Bruno Scrosati,et al.  A new, high performance CuO/LiNi0.5Mn1.5O4 lithium-ion battery , 2013 .

[9]  A. Manthiram,et al.  Impact of Lithium Bis(oxalate)borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries , 2013 .

[10]  T. Uemura,et al.  All-solid secondary batteries with sulfide-based thin film electrolytes , 2013 .

[11]  C. Liang,et al.  An Artificial Solid Electrolyte Interphase Enables the Use of a LiNi0.5 Mn1.5 O4 5 V Cathode with Conventional Electrolytes , 2013 .

[12]  K. Amine,et al.  Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple , 2013 .

[13]  Zhen Zhou,et al.  Recent progress in high-voltage lithium ion batteries , 2013 .

[14]  P. Reale,et al.  Insights about the irreversible capacity of LiNi0.5Mn1.5O4 cathode materials in lithium batteries , 2013 .

[15]  Y. Kang,et al.  Yolk-shelled cathode materials with extremely high electrochemical performances prepared by spray pyrolysis. , 2013, Nanoscale.

[16]  Jung-Hyun Kim,et al.  Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries , 2013 .

[17]  Meiten Koh,et al.  Fluorinated electrolytes for 5 V lithium-ion battery chemistry , 2013 .

[18]  Xin-bo Zhang,et al.  Synthesis of perovskite-based porous La(0.75)Sr(0.25)MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. , 2013, Angewandte Chemie.

[19]  K. Takada,et al.  All-solid-state lithium battery with LiBH4 solid electrolyte , 2013 .

[20]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[21]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[22]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.

[23]  BRENT C. MELOT,et al.  Design and preparation of materials for advanced electrochemical storage. , 2013, Accounts of chemical research.

[24]  C. Liang,et al.  A Perspective on Coatings to Stabilize High-Voltage Cathodes: LiMn1.5Ni0.5O4 with Sub-Nanometer Lipon Cycled with LiPF6 Electrolyte , 2013 .

[25]  J. Dahn,et al.  High Precision Coulometry Study of LiNi0.5Mn1.5O4/Li Coin Cells , 2013 .

[26]  Thomas A. Yersak,et al.  Solid State Enabled Reversible Four Electron Storage , 2013 .

[27]  Yair Ein-Eli,et al.  Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium‐Ion Batteries , 2012 .

[28]  J. Tarascon,et al.  The Stone Age Revisited: Building a Monolithic Inorganic Lithium‐Ion Battery , 2012 .

[29]  G. Graff,et al.  High‐Performance LiNi0.5Mn1.5O4 Spinel Controlled by Mn3+ Concentration and Site Disorder , 2012, Advanced materials.

[30]  K. Zaghib,et al.  Effect of nano LiFePO4 coating on LiMn1.5Ni0.5O4 5 V cathode for lithium ion batteries , 2012 .

[31]  C. Nan,et al.  Structure and electrochemical performance of single-crystal Li1.05Ni0.1Mn1.9O3.98F0.02 coated by Li-La-Ti-O solid electrolyte , 2012 .

[32]  Li-zhen Fan,et al.  Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials , 2012 .

[33]  Sehee Lee,et al.  Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries , 2012 .

[34]  N. Dudney,et al.  Mechanical characterization of Lipon films using nanoindentation , 2011 .

[35]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[36]  Hong Li,et al.  Thermodynamic analysis on energy densities of batteries , 2011 .

[37]  B. Pecquenard,et al.  Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance , 2011 .

[38]  B. Lucht,et al.  Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries , 2010 .

[39]  Dennis W. Dees,et al.  Morphological Transitions on Lithium Metal Anodes , 2009 .

[40]  J. L. Gómez‐Cámer,et al.  Combining 5 V LiNi0.5Mn1.5O4 spinel and Si nanoparticles for advanced Li-ion batteries , 2009 .

[41]  A. Manthiram,et al.  Understanding the Improvement in the Electrochemical Properties of Surface Modified 5 V Limn1.42Ni0.42Co0.16O4 Spinel Cathodes in Lithium-ion Cells , 2009 .

[42]  P. Bruce,et al.  Nano-LiNi(0.5)Mn(1.5)O(4) spinel: a high power electrode for Li-ion batteries. , 2008, Dalton transactions.

[43]  M. Osada,et al.  Interfacial modification for high-power solid-state lithium batteries , 2008 .

[44]  Xu Zhang,et al.  Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells , 2008 .

[45]  Ji-Won Choi,et al.  Issue and challenges facing rechargeable thin film lithium batteries , 2008 .

[46]  J. Tarascon,et al.  First cross-section observation of an all solid-state lithium-ion "nanobattery" by transmission electron microscopy , 2008 .

[47]  M. Armand,et al.  Building better batteries , 2008, Nature.

[48]  B. Pecquenard,et al.  Influence of sputtering conditions on ionic conductivity of LiPON thin films , 2006 .

[49]  N. J. Dudney,et al.  Solid-state thin-film rechargeable batteries , 2005 .

[50]  Junichi Kawamura,et al.  Thin-film lithium-ion battery with amorphous solid electrolyte fabricated by pulsed laser deposition , 2004 .

[51]  H. Sakaebe,et al.  Structural and electrochemical properties of Li(Fe, Co)xMn2 −xO4 solid solution as 5 V positive electrode materials for Li secondary batteries , 2002 .

[52]  Yang-Kook Sun,et al.  Synthesis and electrochemical properties of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode material for lithium secondary batteries , 2002 .

[53]  K. Eberl,et al.  Mesoscopic fast ion conduction in nanometre-scale planar heterostructures , 2000, Nature.

[54]  N. Dudney,et al.  “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode , 2000 .

[55]  D. Guyomard,et al.  The Cr-Substituted Spinel Mn Oxides LiCryMn2−yO4(0≤y≤1): Rietveld Analysis of the Structure Modifications Induced by the Electrochemical Lithium Deintercalation , 1997 .

[56]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[57]  J. Dahn,et al.  Synthesis and Electrochemistry of LiNi x Mn2 − x O 4 , 1997 .

[58]  Brian C. Sales,et al.  Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes , 1996 .

[59]  F. H. Riddle AMERICAN CERAMIC SOCIETY , 1921 .