Timing techniques applied to distributed modular high-energy astronomy: the H.E.R.M.E.S. project

The association of GW170817 with GRB170817A proved that electromagnetic counterparts of gravitational wave events are the key to deeply understand the physics of NS-NS merges. Upgrades of the existing GW antennas and the construction of new ones will allow to increase sensitivity down to several hundred Mpc vastly increasing the number of possible electromagnetic counterparts. Monitoring of the hard X-ray/soft gamma-ray sky with good localisation capabilities will help to effectively tackle this problem allowing to fully exploit multi-messenger astronomy. However, building a high energy all-sky monitor with large collective area might be particularly challenging due to the need to place the detectors onboard satellites of limited size. Distributed astronomy is a simple and cheap solution to overcome this difficulty. Here we discuss in detail dedicated timing techniques that allow to precisely locate an astronomical event in the sky taking advantage of the spatial distribution of a swarm of detectors orbiting Earth.

S. Pirrotta | F. Fuschino | Matteo Cinelli | Fabrizio Ferrandi | Gianluca Morgante | Piero Malcovati | Jiewei Cao | Tomaz Rotovnik | Francesco Russo | Alexander Rashevsky | Andrea Vacchi | Giuseppe Pucacco | G. Zampa | N. Zampa | Andrea Colagrossi | Michèle Lavagna | Giuseppe Sottile | Na Gao | Claudio Labanti | Y. Evangelista | Marco Feroci | Roberto Bertacin | Giuseppe Dilillo | Irina Rashevskaya | Marco Citossi | Gábor Galgóczi | Jakub Ripa | Fabrizio Fiore | Luciano Burderi | Paolo Lunghi | Angel Monge | B. Negri | Simonetta Puccetti | Andrea Sanna | Fabrizio Amarilli | F. Ambrosino | Alessio Anitra | Marco Barbera | Michele Bechini | Giuseppe Bertuccio | Francesco Ceraudo | Aurora Clerici | Giovanni Della Casa | Evgeny Demenev | Melania Del Santo | Tiziana Di Salvo | Pavel Efremov | Chiara Feruglio | Michele Fiorito | Dejan Gacnik | Angelo Francesco Gambino | Massimo Gandola | Giancarlo Ghirlanda | Marco Grassi | A. Guzmán | Mile Karlica | Uros Kostic | Giovanni La Rosa | Ugo Lo Cicero | Alessandro Maselli | Arianna Manca | Filippo Mele | Dorottya Milankovich | L. Nava | Paolo Nogara | Daniele Ottolina | Andrea Pasquale | Andras Pal | M. Perri | Raffaele Piazzolla | Margherita Piccinin | Samuel Pliego-Caballero | Jacopo Prinetto | Alessandro Riggio | Alessandro Papitto | Andrea Santangelo | Francesca Scala | Giulia Sciarrone | David Selcan | Stefano Silvestrini | Christoph Tenzer | Ivan Troisi | Norbert Werner | Lingjun Wang | Yupeng Xu | Giovanni Zanotti | Cristiano Guidorzi | Riccardo Campana | Giavanni Amelino-Camelia | Paolo Bellutti | Tianxiang Chen | Serena Cruzel | M. Fiorini | Andreja Gamboc | Rosario Iaria | Borja Loper Fernandez | Masanori Ohno | Silvia Piranamonte | Enrico Virgili | G. Morgante | M. Grassi | P. Malcovati | A. Vacchi | N. Zampa | A. Colagrossi | Matteo Cinelli | M. Feroci | G. Pucacco | M. Fiorini | A. Pál | G. Bertuccio | Fabrizio Ferrandi | M. Lavagna | G. Zampa | P. Bellutti | C. Guidorzi | A. Maselli | M. Perri | P. Lunghi | I. Rashevskaya | N. Werner | F. Fiore | L. Burderi | G. Ghirlanda | A. Santangelo | Y. Evangelista | M. Ohno | C. Labanti | F. Fuschino | A. Pasquale | G. Rosa | G. Sottile | C. Tenzer | R. Campana | P. Nogara | T. Salvo | S. Puccetti | M. Santo | L. Nava | F. Ambrosino | A. Papitto | R. Iaria | A. Riggio | M. Barbera | C. Feruglio | A. Rashevsky | Fabrizio Amarilli | S. Pirrotta | F. Ceraudo | Tianxiang Chen | Yupeng Xu | U. Kostic | A. Sanna | M. Karlica | Lingjun Wang | F. Russo | R. Piazzolla | B. Negri | F. Scala | M. Gandola | F. Mele | U. L. Cicero | A. Gambino | J. Řípa | J. Prinetto | G. Amelino-Camelia | E. Demenev | T. Rotovnik | G. Zanotti | A. Clerici | G. Casa | M. Piccinin | R. Bertacin | A. Guzmán | G. Dilillo | S. Silvestrini | Jiewei Cao | G. Galgóczi | E. Virgili | N. Gao | M. Citossi | A. Anitra | I. Troisi | M. Fiorito | P. Efremov | B. Fernandez | M. Bechini | S. Pliego-Caballero | Giulia Sciarrone | Dorottya Milánkovich | Dejan Gacnik | D. Ottolina | David Selčan | A. Manca | Angel Monge | Andreja Gamboc | S. Cruzel | Silvia Piranamonte | Ivan Troisi

[1]  F. Fuschino,et al.  The HERMES-TP/SP background and response simulations , 2020, Astronomical Telescopes + Instrumentation.

[2]  Kerri L. Cahoy,et al.  CubeSats for Astronomy and Astrophysics , 2019, 1907.07634.

[3]  S. Pirrotta,et al.  The HERMES-technologic and scientific pathfinder , 2020, Astronomical Telescopes + Instrumentation.

[4]  C. A. Wilson-Hodge,et al.  The Fourth Fermi-GBM Gamma-Ray Burst Catalog: A Decade of Data , 2020 .

[5]  E. E. Fenimore,et al.  Gamma-Ray Bursts Have Millisecond Variability , 1998 .

[6]  T. Sakamoto,et al.  The X-ray counterpart to the gravitational-wave event GW170817 , 2017, Nature.

[7]  T. Piran,et al.  Can Internal Shocks Produce the Variability in Gamma-Ray Bursts? , 1997, astro-ph/9705013.

[8]  D. C. Morris,et al.  Minimum variability time-scales of long and short GRBs , 2012, 1201.4431.

[9]  Jr.,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models , 2017, 1710.05840.

[10]  Y. Avni,et al.  Energy spectra of X-ray clusters of galaxies , 1976 .

[11]  T. Piran Gamma-ray bursts and the fireball model , 1998, astro-ph/9810256.

[12]  Roland Diehl,et al.  THE FERMI GAMMA-RAY BURST MONITOR , 2009, 0908.0450.

[13]  Nadine Gottschalk,et al.  Flash The Hunt For The Biggest Explosions In The Universe , 2016 .

[14]  E. NakarT. Piran Gamma-Ray Burst Light Curves—Another Clue on the Inner Engine , 2002 .

[15]  S. Pirrotta,et al.  The scientific payload on-board the HERMES-TP and HERMES-SP CubeSat missions , 2020, Astronomical Telescopes + Instrumentation.

[16]  Stefano Silvestrini,et al.  Sky visibility analysis for astrophysical data return maximization in HERMES constellation , 2020, Journal of Astronomical Telescopes, Instruments, and Systems.

[17]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[18]  F. Fuschino,et al.  An innovative architecture for wide band transient monitor on board the HERMES nano-satellite constellation , 2020, Astronomical Telescopes + Instrumentation.

[19]  Armin Rest,et al.  The Unprecedented Properties of the First Electromagnetic Counterpart to a Gravitational-wave Source , 2017, 1710.05440.

[20]  R. C. Butler,et al.  BeppoSAX, the wide band mission for X-ray astronomy , 1997 .

[21]  Davide Lazzati,et al.  THE ORIGIN AND PROPAGATION OF VARIABILITY IN THE OUTFLOWS OF LONG-DURATION GAMMA-RAY BURSTS , 2010, 1002.0361.

[22]  C. Kouveliotou,et al.  Transient optical emission from the error box of the γ-ray burst of 28 February 1997 , 1997, Nature.

[23]  S. Capozziello,et al.  GrailQuest: hunting for atoms of space and time hidden in the wrinkle of Space-Time , 2019, Experimental Astronomy.

[24]  J. Ianniello,et al.  Time delay estimation via cross-correlation in the presence of large estimation errors , 1982 .

[25]  Evgenya L. Shkolnik,et al.  On the verge of an astronomy CubeSat revolution , 2018, Nature Astronomy.

[26]  Katharina Burger,et al.  Random Data Analysis And Measurement Procedures , 2016 .

[27]  L. Burderi,et al.  GrailQuest and HERMES: hunting for gravitational wave electromagnetic counterparts and probing space-time quantum foam , 2021, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray.