Thermal spin pumping and magnon-phonon-mediated spin-Seebeck effect

The spin-Seebeck effect (SSE) in ferromagnetic metals and insulators has been investigated systematically by means of the inverse spin-Hall effect (ISHE) in paramagnetic metals. The SSE generates a spin voltage as a result of a temperature gradient in a ferromagnet, which injects a spin current into an attached paramagnetic metal. In the paramagnet, this spin current is converted into an electric field due to the ISHE, enabling the electric detection of the SSE. The observation of the SSE is performed in longitudinal and transverse configurations consisting of a ferromagnet/paramagnet hybrid structure, where thermally generated spin currents flowing parallel and perpendicular to the temperature gradient are detected, respectively. Our results explain the SSE in terms of a two-step process: (1) the temperature gradient creates a non-equilibrium state in the ferromagnet governed by both magnon and phonon propagations and (2) the non-equilibrium between magnons in the ferromagnet and electrons in the paramagnet at the contact interface leads to “thermal spin pumping” and the ISHE signal. The non-equilibrium state of metallic magnets (e.g., Ni81Fe19) under a temperature gradient is governed mainly by the phonons in the sample and the substrate, while in insulating magnets (e.g., Y3Fe5O12), both magnon and phonon propagations appear to be important. The phonon-mediated non-equilibrium that drives the thermal spin pumping is confirmed also by temperature-dependent measurements, giving rise to a giant enhancement of the SSE signals at low temperatures.

[1]  H. Nakayama,et al.  Universality of the spin pumping in metallic bilayer films , 2011 .

[2]  G. Bauer,et al.  Thermoelectric spin diffusion in a ferromagnetic metal , 2009, 0912.1213.

[3]  D. Walton,et al.  Effect of magnon-phonon thermal relaxation on heat transport by magnons , 1977 .

[4]  Ken-ichi Uchida,et al.  Longitudinal spin-Seebeck effect in sintered polycrystalline (Mn,Zn)Fe2O4 , 2010 .

[5]  A. Brataas,et al.  Enhanced gilbert damping in thin ferromagnetic films. , 2001, Physical review letters.

[6]  E. Spencer,et al.  Low-Temperature Line-Width Maximum in Yttrium Iron Garnet , 1959 .

[7]  Kazuya Ando,et al.  Electric detection of spin wave resonance using inverse spin-Hall effect , 2009 .

[8]  S. Maekawa,et al.  Observation of longitudinal spin-Seebeck effect in magnetic insulators , 2010 .

[9]  A. Fert Nobel Lecture: Origin, development, and future of spintronics , 2008 .

[10]  T. Miyazaki,et al.  Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films , 2002 .

[11]  M. Tinkham,et al.  Direct electronic measurement of the spin Hall effect , 2006, Nature.

[12]  Johnson,et al.  Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. , 1987, Physical review. B, Condensed matter.

[13]  B. Wees,et al.  Thermally driven spin injection from a ferromagnet into a non-magnetic metal , 2010, 1004.1566.

[14]  Sadamichi Maekawa,et al.  Linear-response theory of spin Seebeck effect in ferromagnetic insulators , 2010, 1010.2325.

[15]  E. Saitoh,et al.  Electric detection of the spin-Seebeck effect in magnetic insulator in the presence of interface barrier , 2011 .

[16]  D D Awschalom,et al.  Spin-seebeck effect: a phonon driven spin distribution. , 2011, Physical review letters.

[17]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[18]  E. Saitoh,et al.  Local Spin-Seebeck Effect Enabling Two-Dimensional Position Sensing , 2011 .

[19]  M. Brandt,et al.  Scaling behavior of the spin pumping effect in ferromagnet-platinum bilayers. , 2010, Physical review letters.

[20]  Gerrit E W Bauer,et al.  Thermal spin-transfer torque in magnetoelectronic devices. , 2007, Physical review letters.

[21]  S. Maekawa,et al.  Spin Current in Metals and Superconductors , 2008 .

[22]  A. Brataas,et al.  Magnetization noise in magnetoelectronic nanostructures. , 2005, Physical review letters.

[23]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[24]  Heinrich Kuttruff,et al.  Acoustics: An Introduction , 2006 .

[25]  J. Kwo,et al.  Intrinsic spin-dependent thermal transport. , 2011, Physical review letters.

[26]  Sandeep Sharma,et al.  Thermal spin current from a ferromagnet to silicon by Seebeck spin tunnelling , 2011, Nature.

[27]  E. Saitoh,et al.  Optimum condition for spin-current generation from magnetization precession in thin film systems , 2009 .

[28]  Ken-ichi Uchida,et al.  Gigantic enhancement of spin Seebeck effect by phonon drag , 2010, 1010.4600.

[29]  Sadamichi Maekawa,et al.  Concepts in spin electronics , 2006 .

[30]  S. Maekawa,et al.  Observation of the spin Seebeck effect , 2008, Nature.

[31]  Ken-ichi Uchida,et al.  Spin Seebeck effect in thin films of the Heusler compound Co2MnSi , 2011 .

[32]  H. Callen,et al.  The Application of Onsager's Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects , 1948 .

[33]  G. A. Slack,et al.  Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions , 1971 .

[34]  J. Pearson,et al.  Quantifying spin Hall angles from spin pumping: experiments and theory. , 2009, Physical review letters.

[35]  S. Maekawa,et al.  Spin-Seebeck effects in Ni81Fe19/Pt films , 2010 .

[36]  B. V. van Wees,et al.  Direct observation of the spin-dependent Peltier effect. , 2012, Nature nanotechnology.

[37]  S. Maekawa,et al.  Transmission of electrical signals by spin-wave interconversion in a magnetic insulator , 2010, Nature.

[38]  Ken-ichi Uchida,et al.  Thermal artifact on the spin Seebeck effect in metallic thin films deposited on MgO substrates , 2012 .

[39]  R. H. Silsbee,et al.  Coupling between ferromagnetic and conduction-spin-resonance modes at a ferromagnetic-normal-metal interface , 1979 .

[40]  S Takahashi,et al.  Room-temperature reversible spin Hall effect. , 2007, Physical review letters.

[41]  A. Serga,et al.  Spin pumping by parametrically excited exchange magnons. , 2011, Physical review letters.

[42]  F L Bakker,et al.  Interplay of Peltier and Seebeck effects in nanoscale nonlocal spin valves. , 2010, Physical review letters.

[43]  Sadamichi Maekawa,et al.  Numerical study on the spin Seebeck effect , 2011 .

[44]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[45]  S. Maekawa,et al.  Charge pumping and the colored thermal voltage noise in spin valves , 2009, 0902.2389.

[46]  Jack Bass,et al.  Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist's critical review , 2007 .

[47]  Gerrit E. W. Bauer,et al.  Nonlocal magnetization dynamics in ferromagnetic heterostructures , 2005 .

[48]  B. V. van Wees,et al.  Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve , 2001, Nature.

[49]  Eiji Saitoh,et al.  Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect , 2006 .

[50]  Slonczewski Jc,et al.  Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. , 1989 .

[51]  S. Maekawa,et al.  Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. , 2008, Nature materials.

[52]  B. Hillebrands,et al.  Long-range spin Seebeck effect and acoustic spin pumping. , 2011, Nature materials.

[53]  H Adachi,et al.  Spin Seebeck insulator. , 2010, Nature Materials.

[54]  Michael E. Flatté,et al.  Challenges for semiconductor spintronics , 2007 .

[55]  S. Maekawa,et al.  Inverse spin-Hall effect induced by spin pumping in metallic system , 2011 .

[56]  Jiang Xiao,et al.  Theory of magnon-driven spin Seebeck effect , 2010, 1009.0318.

[57]  E. Saitoh,et al.  Detection of pure inverse spin-Hall effect induced by spin pumping at various excitation , 2007 .

[58]  D. D. Awschalom,et al.  Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. , 2010, Nature materials.