Local changes in potassium ions modulate dendritic integration

During neuronal activity the extracellular concentration of potassium ions ([K+]o) increases substantially above resting levels, but it remains unclear what role these [K+]o changes play in dendritic integration of synaptic inputs. We used mathematical formulations and biophysical modeling to explore the role of activity-dependent K+ changes near dendritic segments of a visual cortex pyramidal neuron, receiving synaptic inputs tuned to stimulus orientation. We found that the fine-scale spatial arrangement of inputs dictates the magnitude of [K+]o changes around the dendrites: Dendritic segments with similarly-tuned inputs can attain substantially higher [K+]o increases than segments with diversely-tuned inputs. These [K+]o elevations in turn increase dendritic excitability, leading to more robust and prolonged dendritic spikes. Ultimately, these local effects amplify the gain of neuronal input-output transformations, causing higher orientation-tuned somatic firing rates without compromising orientation selectivity. Our results suggest that local activity-dependent [K+]o changes around dendrites may act as a “volume knob” that determines the impact of synaptic inputs on feature-tuned neuronal firing.

[1]  M. Häusser,et al.  Cortico-cortical feedback engages active dendrites in visual cortex , 2023, Nature.

[2]  C. Akerman,et al.  Intracellular chloride regulation mediates local sleep pressure in the cortex , 2022, Nature Neuroscience.

[3]  H. Hirase,et al.  A sensitive and specific genetically-encoded potassium ion biosensor for in vivo applications across the tree of life , 2022, PLoS biology.

[4]  A. Lüthi,et al.  Compartmentalized dendritic plasticity during associative learning , 2022, Science.

[5]  Hong D. Vo,et al.  High-fidelity dendritic sodium spike generation in human layer 2/3 neocortical pyramidal neurons , 2022, bioRxiv.

[6]  Rei Yamada,et al.  Dendritic synapse geometry optimizes binaural computation in a sound localization circuit , 2021, Science advances.

[7]  M. Oberlaender,et al.  Thalamus gates active dendritic computations in cortex during sensory processing , 2021, bioRxiv.

[8]  J. Dalrymple-Alford,et al.  How neurons exploit fractal geometry to optimize their network connectivity , 2021, Scientific Reports.

[9]  M. Nedergaard,et al.  Interstitial ions: A key regulator of state-dependent neural activity? , 2020, Progress in Neurobiology.

[10]  Athanasia Papoutsi,et al.  Illuminating dendritic function with computational models , 2020, Nature Reviews Neuroscience.

[11]  Claire E. J. Cheetham,et al.  Sex differences in dendritic spine density and morphology in auditory and visual cortices in adolescence and adulthood , 2020, Scientific Reports.

[12]  Marie E. Rognes,et al.  Finite Element Simulation of Ionic Electrodiffusion in Cellular Geometries , 2020, Frontiers in Neuroinformatics.

[13]  Hanchuan Peng,et al.  Whole-Neuron Synaptic Mapping Reveals Spatially Precise Excitatory/Inhibitory Balance Limiting Dendritic and Somatic Spiking , 2020, Neuron.

[14]  Yiyang Gong,et al.  A high-speed, bright, red fluorescent voltage sensor to detect neural activity , 2019, Scientific Reports.

[15]  S. Smirnakis,et al.  Contribution of apical and basal dendrites to orientation encoding in mouse V1 L2/3 pyramidal neurons , 2019, Nature Communications.

[16]  Nicolas Caesar Petersen,et al.  Cortex-wide Changes in Extracellular Potassium Ions Parallel Brain State Transitions in Awake Behaving Mice. , 2019, Cell reports.

[17]  Judit K. Makara,et al.  Impact of functional synapse clusters on neuronal response selectivity , 2019, Nature Communications.

[18]  A. Cruz-Martín,et al.  Increased expression of schizophrenia-associated gene C4 leads to hypoconnectivity of prefrontal cortex and reduced social interaction , 2019, bioRxiv.

[19]  S. Smirnakis,et al.  Contribution of apical and basal dendrites to orientation encoding in mouse V1 L2/3 pyramidal neurons , 2019, Nature Communications.

[20]  Bryan J MacLennan,et al.  Functional clustering of dendritic activity during decision-making , 2018, bioRxiv.

[21]  U. Valentin Nägerl,et al.  Super-Resolution Imaging of the Extracellular Space in Living Brain Tissue , 2018, Cell.

[22]  Rune Rasmussen,et al.  Chaotic Dynamics Mediate Brain State Transitions, Driven by Changes in Extracellular Ion Concentrations. , 2017, Cell systems.

[23]  David Fitzpatrick,et al.  Local Order within Global Disorder: Synaptic Architecture of Visual Space , 2017, Neuron.

[24]  Katie C. Bittner,et al.  Behavioral time scale synaptic plasticity underlies CA1 place fields , 2017, Science.

[25]  Jun B. Ding,et al.  Cell-type–specific inhibition of the dendritic plateau potential in striatal spiny projection neurons , 2017, Proceedings of the National Academy of Sciences.

[26]  Sonja B. Hofer,et al.  Synaptic organization of visual space in primary visual cortex , 2017, Nature.

[27]  M. Larkum,et al.  Active cortical dendrites modulate perception , 2016, Science.

[28]  David E. Whitney,et al.  Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex , 2016, Nature Neuroscience.

[29]  Maiken Nedergaard,et al.  Changes in the composition of brain interstitial ions control the sleep-wake cycle , 2016, Science.

[30]  Bertalan K. Andrásfalvy,et al.  Location-dependent synaptic plasticity rules by dendritic spine cooperativity , 2016, Nature Communications.

[31]  Gaute T. Einevoll,et al.  Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue , 2015, PLoS Comput. Biol..

[32]  Kevin L. Briggman,et al.  Extracellular space preservation aids the connectomic analysis of neural circuits , 2015, eLife.

[33]  Nelson Spruston,et al.  Dendritic integration: 60 years of progress , 2015, Nature Neuroscience.

[34]  Christian Lohmann,et al.  Spontaneous Activity Drives Local Synaptic Plasticity In Vivo , 2015, Neuron.

[35]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[36]  Christof Koch,et al.  Physiology of Layer 5 Pyramidal Neurons in Mouse Primary Visual Cortex: Coincidence Detection through Bursting , 2015, PLoS Comput. Biol..

[37]  J. A. Payne,et al.  Cation-chloride cotransporters in neuronal development, plasticity and disease , 2014, Nature Reviews Neuroscience.

[38]  Yan Ao,et al.  Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice , 2014, Nature Neuroscience.

[39]  R. Shigemoto,et al.  Retrograde synaptic signaling mediated by K+ efflux through postsynaptic NMDA receptors. , 2013, Cell reports.

[40]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[41]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[42]  J. Schiller,et al.  Active properties of neocortical pyramidal neuron dendrites. , 2013, Annual review of neuroscience.

[43]  Thomas M. Morse,et al.  Compartmentalization of GABAergic Inhibition by Dendritic Spines , 2013, Science.

[44]  Gaute T. Einevoll,et al.  Electrodiffusive Model for Astrocytic and Neuronal Ion Concentration Dynamics , 2013, PLoS Comput. Biol..

[45]  Ilya A. Rybak,et al.  Activity-Dependent Changes in Extracellular Ca2+ and K+ Reveal Pacemakers in the Spinal Locomotor-Related Network , 2013, Neuron.

[46]  Jackie Schiller,et al.  Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo , 2012, Nature.

[47]  D. Feldman The Spike-Timing Dependence of Plasticity , 2012, Neuron.

[48]  T. Takano,et al.  Astrocytes Modulate Neural Network Activity by Ca2+-Dependent Uptake of Extracellular K+ , 2012, Science Signaling.

[49]  Norio Matsuki,et al.  Locally Synchronized Synaptic Inputs , 2012, Science.

[50]  D. Hoffman,et al.  DPP6 Establishes the A-Type K+ Current Gradient Critical for the Regulation of Dendritic Excitability in CA1 Hippocampal Neurons , 2011, Neuron.

[51]  Henry Markram,et al.  Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties , 2011, PLoS Comput. Biol..

[52]  Norio Matsuki,et al.  Action-Potential Modulation During Axonal Conduction , 2011, Science.

[53]  Hongbo Jia,et al.  Dendritic organization of sensory input to cortical neurons in vivo , 2010, Nature.

[54]  T. Sejnowski,et al.  Potassium Dynamics in the Epileptic Cortex: New Insights on an Old Topic , 2008, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[55]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[56]  Jackie Schiller,et al.  Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. , 2008, Journal of neurophysiology.

[57]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[58]  J. Magee,et al.  On the Initiation and Propagation of Dendritic Spikes in CA1 Pyramidal Neurons , 2004, The Journal of Neuroscience.

[59]  M. Gutnick,et al.  Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat , 1977, Experimental Brain Research.

[60]  H. Schaible,et al.  Changes in extracellular potassium concentration in cat spinal cord in response to innocuous and noxious stimulation of legs with healthy and inflamed knee joints , 2004, Experimental Brain Research.

[61]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[62]  G. Somjen Ion Regulation in the Brain: Implications for Pathophysiology , 2002, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[63]  Marcello Massimini,et al.  Spatial Buffering during Slow and Paroxysmal Sleep Oscillations in Cortical Networks of Glial Cells In Vivo , 2002, The Journal of Neuroscience.

[64]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[65]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[66]  P. Jonas,et al.  Dynamic Control of Presynaptic Ca2+ Inflow by Fast-Inactivating K+ Channels in Hippocampal Mossy Fiber Boutons , 2000, Neuron.

[67]  C. Nicholson,et al.  Spatial buffering of potassium ions in brain extracellular space. , 2000, Biophysical journal.

[68]  M Migliore,et al.  Dendritic potassium channels in hippocampal pyramidal neurons , 2000, The Journal of physiology.

[69]  J. Magee,et al.  Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. , 1999, Journal of neurophysiology.

[70]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[71]  J. Voipio,et al.  Long-Lasting GABA-Mediated Depolarization Evoked by High-Frequency Stimulation in Pyramidal Neurons of Rat Hippocampal Slice Is Attributable to a Network-Driven, Bicarbonate-Dependent K+ Transient , 1997, The Journal of Neuroscience.

[72]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[73]  Charles Nicholson,et al.  Ion-selective microelectrodes and diffusion measurements as tools to explore the brain cell microenvironment , 1993, Journal of Neuroscience Methods.

[74]  Y. Yaari,et al.  Opponent effects of potassium on GABAA-mediated postsynaptic inhibition in the rat hippocampus. , 1993, Journal of neurophysiology.

[75]  M. Devor,et al.  Mutual excitation among dorsal root ganglion neurons in the rat , 1992, Neuroscience Letters.

[76]  R. Porter,et al.  A fractal analysis of pyramidal neurons in mammalian motor cortex , 1991, Neuroscience Letters.

[77]  C. Nicholson,et al.  Glutamate- and aspartate-induced extracellular potassium and calcium shifts and their relation to those of kainate, quisqualate and n-methyl-d-aspartate in the isolated turtle cerebellum , 1990, Neuroscience.

[78]  B H Gähwiler,et al.  Activity-dependent disinhibition. II. Effects of extracellular potassium, furosemide, and membrane potential on ECl- in hippocampal CA3 neurons. , 1989, Journal of neurophysiology.

[79]  M. Mauk,et al.  Activity-evoked increases in extracellular potassium modulate presynaptic excitability in the CA1 region of the hippocampus. , 1987, Journal of neurophysiology.

[80]  Peter G. Aitken,et al.  The effects of moderate changes of extracellular K+ and Ca2+ on synaptic and neural function in the CA1 region of the hippocampal slice , 1986, Brain Research.

[81]  L. Hertz,et al.  Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level , 1983, Progress in Neurobiology.

[82]  P. Grafe,et al.  Changes of intracellular sodium and potassium ion concentrations in frog spinal motoneurons induced by repetitive synaptic stimulation , 1982, Neuroscience.

[83]  B. Connors,et al.  Activity-dependent K+ accumulation in the developing rat optic nerve. , 1982, Science.

[84]  S G Waxman,et al.  Modulation of parallel fiber excitability by postsynaptically mediated changes in extracellular potassium. , 1981, Science.

[85]  Arvid Lundervold,et al.  Hippocampal excitability and changes in extracellular potassium , 1981, Experimental Neurology.

[86]  G. Somjen,et al.  LSD's effect on neuron populations in visual cortex gauged by transient responses of extracellular potassium evoked by optical stimuli , 1979, Neuroscience Letters.

[87]  G. Somjen Extracellular potassium in the mammalian central nervous system. , 1979, Annual review of physiology.

[88]  G. Somjen,et al.  Potassium, neuroglia, and oxidative metabolism in central gray matter. , 1976, Federation proceedings.

[89]  W. Singer,et al.  Extracellular potassium gradients and visual receptive fields in the cat striate cortex , 1975, Brain Research.

[90]  I Krekule,et al.  Changes of extracellular potassium concentration during spontaneous activity in the mesencephalic reticular formation of the rat. , 1974, Brain research.

[91]  D. Prince,et al.  Potassium activity in rabbit cortex. , 1974, Brain research.

[92]  M. S. Frant,et al.  Potassium Ion Specific Electrode with High Selectivity for Potassium over Sodium , 1970, Science.