Lower bounds for modular counting by circuits with modular gates

Abstract. We prove that constant depth circuits, with one layer of M O Dm gates at the inputs, followed by a fixed number of layers of M O Dp gates, where p is prime, require exponential size to compute the M O Dq function, if q is a prime that divides neither p nor m.

[1]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[2]  Jehoshua Bruck,et al.  Harmonic Analysis of Polynomial Threshold Functions , 1990, SIAM J. Discret. Math..

[3]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[4]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[5]  Pavel Pudlák,et al.  On the Computational Power of Depth-2 Circuits with Threshold and Modulo Gates , 1997, Theor. Comput. Sci..

[6]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[7]  Howard Straubing Constant-Depth periodic Circuits , 1991, Int. J. Algebra Comput..

[8]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[9]  Howard Straubing,et al.  Non-Uniform Automata Over Groups , 1990, Inf. Comput..