Numerical canonical transformation approach to quantum many-body problems

We present a new approach for numerical solutions of ab initio quantum chemistry systems. The main idea of the approach, which we call canonical diagonalization, is to diagonalize directly the second-quantized Hamiltonian by a sequence of numerical canonical transformations.

[1]  J. V. Vleck On sigma-Type Doubling and Electron Spin in the Spectra of Diatomic Molecules , 1929 .

[2]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[3]  Rodney J. Bartlett,et al.  Alternative ansätze in single reference coupled-cluster theory. III. A critical analysis of different methods , 1995 .

[4]  Guido Fano,et al.  Quantum chemistry using the density matrix renormalization group , 2001 .

[5]  K. Wilson Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .

[6]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[7]  Christian Knetter,et al.  Perturbation theory by flow equations: dimerized and frustrated S = 1/2 chain , 2000 .

[8]  Frank Herman,et al.  Symmetry Principles in Solid State and Molecular Physics , 1974 .

[9]  Marcel Nooijen,et al.  Many‐body similarity transformations generated by normal ordered exponential excitation operators , 1996 .

[10]  Rodney J. Bartlett,et al.  Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions , 1996 .

[11]  Franz Wegner Flow‐equations for Hamiltonians , 1994 .

[12]  J. Schrieffer,et al.  Relation between the Anderson and Kondo Hamiltonians , 1966 .

[13]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[14]  K. Wilson,et al.  Perturbative renormalization group for Hamiltonians. , 1994, Physical review. D, Particles and fields.

[15]  M. Wagner Unitary Transformations in Solid State Physics , 1986 .

[16]  Richard L. Martin,et al.  Ab initio quantum chemistry using the density matrix renormalization group , 1998 .