Molecular realization of a quantum NAND tree

The negative-AND (NAND) gate is universal for classical computation making it an important target for development. A seminal quantum computing algorithm by Farhi, Goldstone and Gutmann has demonstrated its realization by means of quantum scattering yielding a quantum algorithm that evaluates the output faster than any classical algorithm. Here, we derive the NAND outputs analytically from scattering theory using a tight-binding (TB) model and show the restrictions on the TB parameters in order to still maintain the NAND gate function. We map the quantum NAND tree onto a conjugated molecular system, and compare the NAND output with non-equilibrium Green’s function transport calculations using density functional theory and TB Hamiltonians for the electronic structure. Further, we extend our molecular platform to show other classical gates that can be realized for quantum computing by scattering on graphs.

[1]  C. Nuckolls,et al.  Comprehensive suppression of single-molecule conductance using destructive σ-interference , 2018, Nature.

[2]  Christian Joachim,et al.  Qubits and quantum Hamiltonian computing performances for operating a digital Boolean 1/2-adder , 2018 .

[3]  G. Solomon,et al.  Effects of Aromaticity and Connectivity on the Conductance of Five-Membered Rings , 2017 .

[4]  M. Strange,et al.  Tuning Conductance in Aromatic Molecules: Constructive and Counteractive Substituent Effects , 2016 .

[5]  Gianaurelio Cuniberti,et al.  Quantum interference based Boolean gates in dangling bond loops on Si(100):H surfaces , 2015, Scientific Reports.

[6]  C. Joachim,et al.  The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate , 2015, Nanotechnology.

[7]  F. Caruso,et al.  Observation of Noise-Assisted Transport in an All-Optical Cavity-Based Network. , 2015, Physical review letters.

[8]  A. Gagliardi,et al.  IETS and quantum interference: propensity rules in the presence of an interference feature. , 2014, The Journal of chemical physics.

[9]  K. Thygesen,et al.  Temperature effects on quantum interference in molecular junctions , 2014 .

[10]  Filippo Caruso,et al.  Universally optimal noisy quantum walks on complex networks , 2013, 1312.1832.

[11]  Andrew M. Childs,et al.  Universal Computation by Multiparticle Quantum Walk , 2012, Science.

[12]  Christian Joachim,et al.  The Different Designs of Molecule Logic Gates , 2012, Advanced materials.

[13]  S. J. van der Molen,et al.  Observation of quantum interference in molecular charge transport. , 2011, Nature nanotechnology.

[14]  Andrew M. Childs,et al.  Levinson's theorem for graphs II , 2011, 1203.6557.

[15]  Andrew M. Childs,et al.  Levinson's theorem for graphs , 2011, Journal of Mathematical Physics.

[16]  C. Joachim,et al.  Manipulating molecular quantum states with classical metal atom inputs: demonstration of a single molecule NOR logic gate. , 2011, ACS nano.

[17]  James D. Whitfield,et al.  Quantum Stochastic Walks: A Generalization of Classical Random Walks and Quantum Walks , 2009, 0905.2942.

[18]  M. Ratner,et al.  Molecular transport junctions with semiconductor electrodes: analytical forms for one-dimensional self-energies. , 2009, The journal of physical chemistry. A.

[19]  M. Wasielewski,et al.  Quantum interference in acyclic systems: conductance of cross-conjugated molecules. , 2008, Journal of the American Chemical Society.

[20]  M. Wasielewski,et al.  Quantum Interference: The Structural Dependence of Electron Transmission through Model Systems and Cross-Conjugated Molecules , 2008 .

[21]  Andrew M. Childs,et al.  Universal computation by quantum walk. , 2008, Physical review letters.

[22]  S. Klaiman,et al.  Controlled electronic transport through branched molecular conductors , 2008 .

[23]  M. Wasielewski,et al.  Scaling laws for charge transfer in multiply bridged donor/acceptor molecules in a dissipative environment. , 2007, Journal of the American Chemical Society.

[24]  E. Farhi,et al.  A Quantum Algorithm for the Hamiltonian NAND Tree , 2007, Theory Comput..

[25]  M. Wasielewski,et al.  Electron transfer in multiply bridged donor-acceptor molecules: Dephasing and quantum coherence. , 2006, The journal of physical chemistry. B.

[26]  N. Cerf,et al.  HAMILTONIAN LOGIC GATES: COMPUTING INSIDE A MOLECULE , 2005 .

[27]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[28]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[29]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[30]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[31]  William P. Purcell,et al.  A brief review and table of semiempirical parameters used in the Hueckel molecular orbital method , 1967 .