Phase field method

In an ideal scenario, a phase field model is able to compute quantitative aspects of the evolution of microstructure without explicit intervention. The method is particularly appealing because it provides a visual impression of the development of structure, one which often matches observations. The essence of the technique is that phases and the interfaces between the phases are all incorporated into a grand functional for the free energy of a heterogeneous system, using an order parameter which can be translated into what is perceived as a phase or an interface in ordinary jargon. There are, however, assumptions which are inconsistent with practical experience and it is important to realise the limitations of the method. The purpose of this review is to introduce the essence of the method, and to describe, in the context of materials science, the advantages and pitfalls associated with the technique.

[1]  H. K. D. H. Bhadeshia,et al.  Phase-field model study of the crystal morphological evolution of hcp metals , 2009 .

[2]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[3]  S. Kim A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties , 2007 .

[4]  Yunzhi Wang,et al.  Multi-scale phase field approach to martensitic transformations , 2006 .

[5]  H. Bhadeshia,et al.  M4C3 precipitation in Fe–C–Mo–V steels and relationship to hydrogen trapping , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  I. Steinbach,et al.  Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  E. Fras,et al.  About Kolmogorov's statistical theory of phase transformation , 2005 .

[8]  Yunzhi Wang,et al.  Incorporation of γ-surface to phase field model of dislocations: simulating dislocation dissociation in fcc crystals , 2004 .

[9]  Won Tae Kim,et al.  Phase-field modeling of eutectic solidification , 2004 .

[10]  Phil Won Yu,et al.  Optical characteristics of self-assembled InAs quantum dots with InGaAs grown by a molecular beam epitaxy , 2004 .

[11]  Katsuyo Thornton,et al.  Modelling the evolution of phase boundaries in solids at the meso- and nano-scales , 2003 .

[12]  H. Bhadeshia,et al.  Modelling and characterisation of Mo2C precipitation and cementite dissolution during tempering of Fe–C–Mo martensitic steel , 2003 .

[13]  H. Bhadeshia,et al.  Modelling and characterisation of V4C3 precipitation and cementite dissolution during tempering of Fe-C-V martensitic steel , 2003 .

[14]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[15]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[16]  N. Fujita Modelling simultaneous alloy carbide sequence in power plant steels : Transformations and Microstructures , 2002 .

[17]  Y. Suwa,et al.  Kinetics of Phase Separation in Ternary Alloys , 2002 .

[18]  Toshio Suzuki,et al.  Recent advances in the phase-field model for solidification , 2001 .

[19]  A. A. Wheeler Cahn–Hoffman ξ-Vector and Its Relation to Diffuse Interface Models of Phase Transitions , 1999 .

[20]  Toshio Suzuki,et al.  Interfacial compositions of solid and liquid in a phase-field model with finite interface thickness for isothermal solidification in binary alloys , 1998 .

[21]  Il,et al.  EFFICIENT COMPUTATION OF DENDRITIC MICROSTRUCTURES USING ADAPTIVE MESH REFINEMENT , 1997, cond-mat/9710167.

[22]  Jilt Sietsma,et al.  Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions , 1997 .

[23]  Joseph D. Robson,et al.  Modelling precipitation sequences in powerplant steels Part 2 – Application of kinetic theory , 1997 .

[24]  Joseph D. Robson,et al.  Modelling precipitation sequences in power plant steels Part 1 – Kinetic theory , 1997 .

[25]  F. Vermolen,et al.  Analytical approach to particle dissolution in a finite medium , 1997 .

[26]  M. Lusk,et al.  Comparison of Johnson-Mehl-Avrami-Kologoromov kinetics with a phase-field model for microstructural evolution driven by substructure energy , 1997 .

[27]  I. Steinbach,et al.  A phase field concept for multiphase systems , 1996 .

[28]  A. Karma,et al.  Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  J. Warren,et al.  Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method , 1995 .

[30]  C. Atkinson,et al.  Diffusion-controlled growth of disordered interphase boundaries in finite matrix , 1993 .

[31]  R. Kobayashi Modeling and numerical simulations of dendritic crystal growth , 1993 .

[32]  H. Bhadeshia,et al.  Kinetics of reconstructive austenite to ferrite transformation in low alloy steels , 1992 .

[33]  R. Vandermeer Modeling diffusional growth during austenite decomposition to ferrite in polycrystalline FeC alloys , 1990 .

[34]  B. Gretoft,et al.  A model for the development of microstructure in low-alloy steel (Fe-Mn-Si-C) weld deposits , 1985 .

[35]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[36]  J. Kirkaldy,et al.  Partition of manganese during the proeutectoid ferrite transformation in steel , 1972 .

[37]  D. W. Hoffman,et al.  A vector thermodynamics for anisotropic surfaces: I. Fundamentals and application to plane surface junctions , 1972 .

[38]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[39]  Donald G. Miller THERMODYNAMICS OF IRREVERSIBLE PROCESSES: THE EXPERIMENTAL VERIFICATION OF THE ONSAGER RECIPROCAL RELATIONS , 1959 .

[40]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[41]  John W. Cahn,et al.  The kinetics of grain boundary nucleated reactions , 1956 .

[42]  E. Machlin Some Applications of the Thermodynamic Theory of Irreversible Processes to Physical Metallurgy , 1953 .

[43]  H. Markovitz Note on ``Interference of Growing Spherical Precipitate Particles'' , 1950 .

[44]  M. Avrami Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III , 1941 .

[45]  M. Avrami Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei , 1940 .

[46]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[47]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[48]  H. K. D. H. Bhadeshiaa,et al.  Phase-field model study of the effect of interface anisotropy on the crystal morphological evolution of cubic metals , 2009 .

[49]  R. Trivedi,et al.  Solidification microstructures: recent developments, future directions , 2000 .

[50]  G. B. McFadden,et al.  On the notion of a ξ–vector and a stress tensor for a general class of anisotropic diffuse interface models , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[51]  Wheeler,et al.  Phase-field model for isothermal phase transitions in binary alloys. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[52]  Clarence Zener,et al.  Interference of Growing Spherical Precipitate Particles , 1950 .

[53]  M. Avrami,et al.  Kinetics of Phase Change 2 , 1940 .

[54]  W. A. Johnson Reaction Kinetics in Processes of Nucleation and Growth , 1939 .