Automated depression analysis using convolutional neural networks from speech
暂无分享,去创建一个
[1] Fabien Ringeval,et al. AVEC 2017: Real-life Depression, and Affect Recognition Workshop and Challenge , 2017, AVEC@ACM Multimedia.
[2] M. Hamilton. A RATING SCALE FOR DEPRESSION , 1960, Journal of neurology, neurosurgery, and psychiatry.
[3] Thomas F. Quatieri,et al. Vocal and Facial Biomarkers of Depression based on Motor Incoordination and Timing , 2014, AVEC '14.
[4] Björn W. Schuller,et al. Recent developments in openSMILE, the munich open-source multimedia feature extractor , 2013, ACM Multimedia.
[5] Fan Yang,et al. Depression Assessment by Fusing High and Low Level Features from Audio, Video, and Text , 2016, AVEC@ACM Multimedia.
[6] Varun Jain,et al. Depression Estimation Using Audiovisual Features and Fisher Vector Encoding , 2014, AVEC '14.
[7] Thomas F. Quatieri,et al. Detecting Depression using Vocal, Facial and Semantic Communication Cues , 2016, AVEC@ACM Multimedia.
[8] Enrique Argones-Rúa,et al. Audiovisual three-level fusion for continuous estimation of Russell's emotion circumplex , 2013, AVEC@ACM Multimedia.
[9] A. Beck,et al. Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. , 1996, Journal of personality assessment.
[10] Ting Dang,et al. Staircase Regression in OA RVM, Data Selection and Gender Dependency in AVEC 2016 , 2016, AVEC@ACM Multimedia.
[11] Wolfgang Minker,et al. Emotion Recognition and Depression Diagnosis by Acoustic and Visual Features: A Multimodal Approach , 2014, AVEC '14.
[12] Björn W. Schuller,et al. AVEC 2014: 3D Dimensional Affect and Depression Recognition Challenge , 2014, AVEC '14.
[13] M. Åsberg,et al. A New Depression Scale Designed to be Sensitive to Change , 1979, British Journal of Psychiatry.
[14] Guodong Guo,et al. Automated Depression Diagnosis Based on Deep Networks to Encode Facial Appearance and Dynamics , 2018, IEEE Transactions on Affective Computing.
[15] Matti Pietikäinen,et al. Median Robust Extended Local Binary Pattern for Texture Classification , 2016, IEEE Trans. Image Process..
[16] Yunhong Wang,et al. DepAudioNet: An Efficient Deep Model for Audio based Depression Classification , 2016, AVEC@ACM Multimedia.
[17] Pascal Vincent,et al. Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[18] Heng Wang,et al. Depression recognition based on dynamic facial and vocal expression features using partial least square regression , 2013, AVEC@ACM Multimedia.
[19] Tiago H. Falk,et al. Model Fusion for Multimodal Depression Classification and Level Detection , 2014, AVEC '14.
[20] J. Markowitz,et al. The 16-Item quick inventory of depressive symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): a psychometric evaluation in patients with chronic major depression , 2003, Biological Psychiatry.
[21] R. Spitzer,et al. The PHQ-9: A new depression diagnostic and severity measure , 2002 .
[22] Jeffrey F. Cohn,et al. Detecting Depression Severity from Vocal Prosody , 2013, IEEE Transactions on Affective Computing.
[23] Elliot Moore,et al. Critical Analysis of the Impact of Glottal Features in the Classification of Clinical Depression in Speech , 2008, IEEE Transactions on Biomedical Engineering.
[24] Kim E. A. Silverman,et al. Evidence for the independent function of intonation contour type, voice quality, and F0 range in signaling speaker affect , 1985 .
[25] T. Strine,et al. The PHQ-8 as a measure of current depression in the general population. , 2009, Journal of affective disorders.
[26] Matti Pietikäinen,et al. Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[27] Dongmei Jiang,et al. Decision Tree Based Depression Classification from Audio Video and Language Information , 2016, AVEC@ACM Multimedia.
[28] Fabien Ringeval,et al. AVEC 2016: Depression, Mood, and Emotion Recognition Workshop and Challenge , 2016, AVEC@ACM Multimedia.
[29] K. Scherer,et al. Vocal cues in emotion encoding and decoding , 1991 .
[30] J. Mundt,et al. Voice acoustic measures of depression severity and treatment response collected via interactive voice response (IVR) technology , 2007, Journal of Neurolinguistics.
[31] Fan Zhang,et al. Automatic Depression Scale Prediction using Facial Expression Dynamics and Regression , 2014, AVEC '14.
[32] K. Scherer. Vocal affect expression: a review and a model for future research. , 1986, Psychological bulletin.
[33] Tanaya Guha,et al. Multimodal Prediction of Affective Dimensions and Depression in Human-Computer Interactions , 2014, AVEC '14.
[34] Thomas F. Quatieri,et al. Vocal biomarkers of depression based on motor incoordination , 2013, AVEC@ACM Multimedia.
[35] Roland Göcke,et al. Diagnosis of depression by behavioural signals: a multimodal approach , 2013, AVEC@ACM Multimedia.
[36] Thomas F. Quatieri,et al. A review of depression and suicide risk assessment using speech analysis , 2015, Speech Commun..
[37] Panayiotis G. Georgiou,et al. Multimodal and Multiresolution Depression Detection from Speech and Facial Landmark Features , 2016, AVEC@ACM Multimedia.
[38] Björn W. Schuller,et al. AVEC 2013: the continuous audio/visual emotion and depression recognition challenge , 2013, AVEC@ACM Multimedia.
[39] John Kane,et al. COVAREP — A collaborative voice analysis repository for speech technologies , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[40] Dimitra Vergyri,et al. The SRI AVEC-2014 Evaluation System , 2014, AVEC '14.
[41] Markus Kächele,et al. Inferring Depression and Affect from Application Dependent Meta Knowledge , 2014, AVEC '14.