Room temperature thermo-electric pumping in mid-infrared light-emitting diodes

We present measurements of mid-infrared light-emitting diodes generating photons above the conventional limit of 100% electrical-to-optical power conversion efficiency. At low forward bias, lattice heat is absorbed via thermo-electric effects in the carrier injection process and released radiatively through recombination, so the diode acts as a thermodynamic heat pump. Experiments support an effective temperature model for electro-luminescence in the cooling regime and refute alternative interpretations of existing results. Although non-radiative recombination limits the power density available above unity efficiency, experiments confirm the phenomenon at room temperature.

[1]  T. R. Gosnell,et al.  Observation of laser-induced fluorescent cooling of a solid , 1995, Nature.

[2]  Nonna V. Zotova,et al.  Negative luminescence from InAsSbP-based diodes in the 4.0- to 4.3-μm range , 2001, SPIE OPTO.

[3]  H. Nelson,et al.  Evidence of Refrigerating Action by Means of Photon Emission in Semiconductor Diodes , 1964 .

[4]  B. A. Matveev,et al.  Negative luminescence and devices based on this phenomenon , 2007 .

[5]  Jani Oksanen,et al.  Ultimate limit and temperature dependency of light-emitting diode efficiency , 2009 .

[6]  M. Weinstein,et al.  Thermodynamic Limitation on the Conversion of Heat into Light , 1960 .

[7]  Mansoor Sheik-Bahae,et al.  Laser cooling of solids to cryogenic temperatures , 2010 .

[8]  J. Tauc,et al.  The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from ap-n junction , 1957 .

[9]  Rajeev J. Ram,et al.  Electro-luminescent cooling: light emitting diodes above unity efficiency , 2013, Photonics West - Optoelectronic Materials and Devices.

[10]  P. Würfel,et al.  The chemical potential of radiation , 1982 .

[11]  G. Sotnikova,et al.  Low Voltage CO$_2$-Gas Sensor Based on III–V Mid-IR Immersion Lens Diode Optopairs: Where we Are and How Far we Can Go? , 2010, IEEE Sensors Journal.

[12]  Dragica Vasileska,et al.  Fundamental mechanisms of electroluminescence refrigeration in heterostructure light-emitting diodes , 2007, SPIE OPTO.

[13]  S. Yen,et al.  Analysis of heterostructures for electroluminescent refrigeration and light emitting without heat generation , 2010 .

[14]  Jani Oksanen,et al.  The challenge of unity wall plug efficiency: The effects of internal heating on the efficiency of light emitting diodes , 2010 .

[15]  Paul Berdahl,et al.  Radiant refrigeration by semiconductor diodes , 1985 .

[16]  Liyu Yang,et al.  Design for Reliability of Solid State Lighting Products , 2013 .

[17]  Shui-Qing Yu,et al.  Influence of photon recycling on semiconductor luminescence refrigeration , 2006 .

[18]  William W. Bewley,et al.  Negative luminescence with 93% efficiency from midwave infrared HgCdTe diode arrays , 2003 .

[19]  A G Mal'shukov,et al.  Opto-thermionic refrigeration in semiconductor heterostructures. , 2001, Physical review letters.

[20]  Huibin Lu,et al.  Numerical analysis of optothermionic refrigeration in semiconductor triple-well structure , 2007 .

[21]  Rajeev J Ram,et al.  Thermoelectrically pumped light-emitting diodes operating above unity efficiency. , 2012, Physical review letters.

[22]  V. Ratushnyi,et al.  Properties of GaInAsSb/GaSb (λ = 1.8–2.3 μm) immersion lens photodiodes at 20–140°C , 2007 .

[23]  Rajeev J Ram,et al.  Bias-dependent Peltier coefficient and internal cooling in bipolar devices , 2002 .

[24]  The flip-chip InGaAsSb/GaSb LEDs emitting at a wavelength of 1.94 μm , 2006 .

[25]  Xuejun Fan,et al.  Solid State Lighting Reliability , 2013 .