Preparation and electrical property of CaZr0.7M0.3O3 (M = Fe, Cr and Co) dense diffusion barrier for application in limiting current oxygen sensor

Abstract (M = Fe, Cr and Co) doped CaZrO3, CaZr0.7M0.3O3 (M = Fe, Cr and Co), was synthesized by solid state reaction method. Crystalline structure, microstructures, electronic conductivity, total conductivity and sensing performance were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Hebb-Wagner, DC van der Pauw and voltammetry method, respectively. XRD measurements show that the CaZr0.7M0.3O3 (M = Fe, Cr and Co) samples belong to an orthorhombic perovskite structure. SEM measurements show that the CaZr0.7M0.3O3 (M = Fe, Cr and Co) samples have fine grains with average grain size of 0.5–2 μm. Electrical property measurements show that the CaZr0.7Fe0.3O3 and CaZr0.7Cr0.3O3 samples have the highest electronic conductivity and total conductivity in air, respectively. Sensing performance measurements show that limiting current-type oxygen sensors with 9YSZ solid electrolyte and CaZr0.7M0.3O3 dense diffusion barrier exhibit good limiting current (IL) plateau. Log IL depends linearly on 1000/T. IL depends linearly on oxygen partial pressure.

[1]  D. Janke Oxygen probes based on calcia-doped hafnia or calcium zirconate for use in metallic melts , 1982 .

[2]  Jingkun Yu,et al.  A limiting current oxygen sensor with La0.8Sr0.2(Ga0.8Mg0.2)1-xFexO3-δ dense diffusion barrier , 2017, Journal of Solid State Electrochemistry.

[3]  G. Choi,et al.  The effect of cation nonstoichiometry on the electrical conductivity of acceptor-doped CaZrO3 , 2006 .

[4]  Hiroshi Osanai,et al.  Gas Polarographic Oxygen Sensor Using an Oxygen/Zirconia Electrolyte , 1989 .

[5]  Ying-Nan Wen,et al.  A study of the solid electrolyte Y2O3-doped CaZrO3* , 1988 .

[6]  G. Choi,et al.  The effect of cation nonstoichiometry on the electrical conductivity of CaZrO3 , 2005 .

[7]  F. H. Taylor,et al.  Screening Divalent Metals for A- and B-Site Dopants in LaFeO3 , 2017 .

[8]  Tao Liu,et al.  Crystalline structure, microstructure and electrical characterizations of FeO1.5 doped YSZ , 2017 .

[9]  Shumin Fang,et al.  Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors , 2015, Nature Communications.

[10]  S. Yamaguchi,et al.  Electrical transport properties of calcium zirconate at high temperature , 1998 .

[11]  H. Wiemhöfer,et al.  The effects of Co and Cr on the electrical conductivity of cerium gadolinium oxide , 2015 .

[12]  I. Igarashi,et al.  Influence of H2O, CO2 and various combustible gases on the characteristics of a limiting current-type oxygen sensor , 1988 .

[13]  R. Baker Future directions of membrane gas separation technology , 2002 .

[14]  M. Miyayama,et al.  New Method to Fabricate Limiting‐Current‐Type Oxygen Sensors , 2004 .

[15]  Jingkun Yu,et al.  Crystal structure, microstructure, thermal expansion and electrical conductivity of CeO2–ZrO2 solid solution , 2017 .

[16]  Shik Shin,et al.  Electronic transport properties and electronic structure of InO1.5-doped CaZrO3 , 2000 .

[17]  Z. Wen,et al.  Fabrication of dense CaZr0.90In0.10O3 − δ ceramics from the fine powders prepared by an optimized solid-state reaction method , 2008 .

[18]  Meilin Liu,et al.  A new type of amperometric oxygen sensor based on a mixed-conducting composite membrane , 2001 .

[19]  T. Yogo,et al.  Proton conduction in sintered oxides based on CaZrO3 , 1991 .

[20]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[21]  C. Schwandt,et al.  Oxide Ion Conduction in Indium-Oxide-Substituted Calcium Zirconate , 2006 .

[22]  Jingkun Yu,et al.  A review of zirconia-based solid electrolytes , 2016, Ionics.

[23]  H. Rickert Electrochemistry of solids , 1982 .

[24]  G. Choi,et al.  The mixed ionic and electronic conductivity of CaZrO3 with cation nonstoichiometry and oxygen partial pressure , 2008 .

[25]  Eric L. Brosha,et al.  Dense diffusion barrier limiting current oxygen sensors , 1998 .

[26]  Jingkun Yu,et al.  A review of high-temperature electrochemical sensors based on stabilized zirconia , 2015 .

[27]  Jingkun Yu,et al.  Limiting current oxygen sensor based on La0.8Sr0.2Ga0.8Mg0.2O3−δ as both dense diffusion barrier and solid electrolyte , 2017 .

[28]  R. Rapp,et al.  Mixed Conduction in Zr0.85 Ca0.15 O 1.85 and Th0.85 Y 0.15 O 1.925 Solid Electrolytes , 1967 .

[29]  M. Dudek,et al.  Calcium zirconate: preparation, properties and application to the solid oxide galvanic cells , 2002 .

[30]  J. Goodenough,et al.  Sr0.7Ho0.3CoO3−δ as a potential cathode material for intermediate-temperature solid oxide fuel cells , 2012 .

[31]  P. Tsiakaras,et al.  Deposition and Characterization of Y-doped CaZrO3 Electrolyte Film on a Porous SrTi0.8Fe0.2O3-δ Substrate , 2016 .

[32]  Tao Liu,et al.  A Limiting Current Oxygen Sensor Based on LSGM as a Solid Electrolyte and LSGMN (N = Fe, Co) as a Dense Diffusion Barrier , 2016, Journal of Materials Engineering and Performance.

[33]  Jingkun Yu,et al.  Properties of limiting current oxygen sensor with La0.8Sr0.2Ga0.8Mg0.2O3−δ solid electrolyte and La0.8Sr0.2(Ga0.8Mg0.2)1−xCrxO3−δ dense diffusion barrier , 2017 .

[34]  N. Minh Ceramic Fuel Cells , 1993 .