Efficient spatial variation modeling via robust dictionary learning

In this paper, we propose a novel spatial variation modeling method based on robust dictionary learning for nanoscale integrated circuits. This method takes advantage of the historical data to efficiently improve the accuracy of wafer-level spatial variation modeling with extremely low measurement cost. Robust regression is adopted by our implementation to reduce the bias posed by outliers. An iterative coordinate descent method is further introduced to solve the dictionary learning problem with consideration of missing data. Our numerical experiments based on industrial measurement data demonstrate that the proposed method achieves up to 70% error reduction over the conventional VP approach without increasing the measurement cost.

[1]  Rob A. Rutenbar,et al.  Efficient Spatial Pattern Analysis for Variation Decomposition Via Robust Sparse Regression , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[2]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[3]  Kenneth M. Butler,et al.  A fast spatial variation modeling algorithm for efficient test cost reduction of analog/RF circuits , 2015, 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[4]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[5]  E.J. Candes Compressive Sampling , 2022 .

[6]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[7]  Joseph F. Murray,et al.  Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.

[8]  James Tschanz,et al.  Parameter variations and impact on circuits and microarchitecture , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[9]  Rob A. Rutenbar,et al.  Automatic clustering of wafer spatial signatures , 2013, 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).

[10]  Wangyang Zhang,et al.  Efficient Variation Decomposition via Robust Sparse Regression , 2013 .

[11]  Kenneth M. Butler,et al.  Test cost reduction through performance prediction using virtual probe , 2011, 2011 IEEE International Test Conference.

[12]  Yiorgos Makris,et al.  Spatial estimation of wafer measurement parameters using Gaussian process models , 2012, 2012 IEEE International Test Conference.

[13]  Rob A. Rutenbar,et al.  Virtual Probe: A Statistical Framework for Low-Cost Silicon Characterization of Nanoscale Integrated Circuits , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[14]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[15]  R. Fletcher Practical Methods of Optimization , 1988 .

[16]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[17]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[18]  Rob A. Rutenbar,et al.  Bayesian Virtual Probe: Minimizing variation characterization cost for nanoscale IC technologies via Bayesian inference , 2010, Design Automation Conference.

[19]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[20]  Rob A. Rutenbar,et al.  Multi-Wafer Virtual Probe: Minimum-cost variation characterization by exploring wafer-to-wafer correlation , 2010, 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[21]  Rob A. Rutenbar,et al.  Virtual probe: A statistically optimal framework for minimum-cost silicon characterization of nanoscale integrated circuits , 2009, 2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers.