A comparative study of nonlinear Markov chain models for conditional simulation of multinomial classes from regular samples

Simulating fields of categorical geospatial variables from samples is crucial for many purposes, such as spatial uncertainty assessment of natural resources distributions. However, effectively simulating complex categorical variables (i.e., multinomial classes) is difficult because of their nonlinearity and complex interclass relationships. The existing pure Markov chain approach for simulating multinomial classes has an apparent deficiency—underestimation of small classes, which largely impacts the usefulness of the approach. The Markov chain random field (MCRF) theory recently proposed supports theoretically sound multi-dimensional Markov chain models. This paper conducts a comparative study between a MCRF model and the previous Markov chain model for simulating multinomial classes to demonstrate that the MCRF model effectively solves the small-class underestimation problem. Simulated results show that the MCRF model fairly produces all classes, generates simulated patterns imitative of the original, and effectively reproduces input transiograms in realizations. Occurrence probability maps are estimated to visualize the spatial uncertainty associated with each class and the optimal prediction map. It is concluded that the MCRF model provides a practically efficient estimator for simulating multinomial classes from grid samples.

[1]  Chuanrong Zhang,et al.  Application of Transiograms to Markov Chain Simulation and Spatial Uncertainty Assessment of Land-Cover Classes , 2005 .

[2]  Li Weidong Transiogram: A spatial relationship measure for categorical data , 2006 .

[3]  Michael F. Goodchild,et al.  Development and test of an error model for categorical data , 1992, Int. J. Geogr. Inf. Sci..

[4]  G. Fogg,et al.  Transition probability-based indicator geostatistics , 1996 .

[5]  Weidong Li,et al.  A Generalized Markov Chain Approach for Conditional Simulation of Categorical Variables from Grid Samples , 2006, Trans. GIS.

[6]  D. Mark,et al.  The Nature Of Boundaries On ‘Area-Class’ Maps , 1989 .

[7]  Phaedon C. Kyriakidis,et al.  A geostatistical approach for mapping thematic classification accuracy and evaluating the impact of inaccurate spatial data on ecological model predictions , 2001, Environmental and Ecological Statistics.

[8]  George Christakos,et al.  Modern Spatiotemporal Geostatistics , 2000 .

[9]  P. Renard,et al.  Dealing with spatial heterogeneity , 2005 .

[10]  A. Journel Nonparametric estimation of spatial distributions , 1983 .

[11]  H. Todd Mowrer,et al.  Propagating uncertainty through spatial estimation processes for old-growth subalpine forests using sequential Gaussian simulation in GIS , 1997 .

[12]  Leo A. Aroian,et al.  The generation of multidimensional autoregressive series by the herringbone method , 1985 .

[13]  Jennifer A. Miller,et al.  Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence , 2002 .

[14]  Pierre Goovaerts,et al.  Stochastic simulation of categorical variables using a classification algorithm and simulated annealing , 1996 .

[15]  D. M. Titterington,et al.  An Empirical Study of the Simulation of Various Models used for Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Clayton V. Deutsch,et al.  A sequential indicator simulation program for categorical variables with point and block data: BlockSIS , 2006, Comput. Geosci..

[17]  P. Bogaert Spatial prediction of categorical variables: the Bayesian maximum entropy approach , 2002 .

[18]  P. Burrough,et al.  The indicator approach to categorical soil data. II: Application to mapping and land use suitability analysis , 1993 .

[19]  Weidong Li,et al.  Markov Chain Random Fields for Estimation of Categorical Variables , 2007 .

[20]  Antonio G. Chessa,et al.  A Markov Chain Model for Subsurface Characterization: Theory and Applications , 2006 .

[21]  Patrick Bogaert,et al.  Spatial prediction of categorical variables with the Bayesian Maximum Entropy approach: the Ooypolder case study , 2004 .

[22]  G. Fogg,et al.  Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains , 1997 .

[23]  Chuanrong Zhang,et al.  Two-dimensional Markov chain simulation of soil type spatial distribution , 2004 .

[24]  P. Burrough,et al.  The indicator approach to categorical soil data: I. Theory , 1993 .

[25]  D. J. Brus,et al.  Sampling for Natural Resource Monitoring , 2006 .

[26]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[27]  R. Olea Geostatistics for Natural Resources Evaluation By Pierre Goovaerts, Oxford University Press, Applied Geostatistics Series, 1997, 483 p., hardcover, $65 (U.S.), ISBN 0-19-511538-4 , 1999 .

[28]  Graham E. Fogg,et al.  Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework , 1999 .

[29]  G. Christakos A Bayesian/maximum-entropy view to the spatial estimation problem , 1990 .

[30]  M. Goodchild,et al.  Uncertainty in geographical information , 2002 .