Evolutionary Multi-Objective Optimization Algorithms

Evolutionary multi-objective optimization (EMO), whose main task is to deal with multi-objective optimization problems by evolutionary computation, has become a hot topic in evolutionary computation community. After summarizing the EMO algorithms before 2003 briefly, the recent advances in EMO are discussed in details. The current research directions are concluded. On the one hand, more new evolutionary paradigms have been introduced into EMO community, such as particle swarm optimization, artificial immune systems, and estimation distribution algorithms. On the other hand, in order to deal with many-objective optimization problems, many new dominance schemes different from traditional Pareto-dominance come forth. Furthermore, the essential characteristics of multi-objective optimization problems are deeply investigated. This paper also gives experimental comparison of several representative algorithms. Finally, several viewpoints for the future research of EMO are

[1]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[2]  J. Tukey,et al.  Variations of Box Plots , 1978 .

[3]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[4]  Carlos A. Coello Coello,et al.  An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[5]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[6]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[7]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[8]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[9]  Balram Suman,et al.  Study of self-stopping PDMOSA and performance measure in multiobjective optimization , 2005, Comput. Chem. Eng..

[10]  Carlos A. Coello Coello,et al.  A Micro-Genetic Algorithm for Multiobjective Optimization , 2001, EMO.

[11]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[12]  Jonathan E. Fieldsend,et al.  A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .

[13]  Xie Tao,et al.  Evolutionary Algorithms of Multi-Objective Optimization Problems , 2003 .

[14]  Carlos A. Coello Coello,et al.  Recent Trends in Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[15]  Jeffrey Horn,et al.  The Niched Pareto Genetic Algorithm 2 Applied to the Design of Groundwater Remediation Systems , 2001, EMO.

[16]  Mohammad Ali Abido,et al.  Two-level of nondominated solutions approach to multiobjective particle swarm optimization , 2007, GECCO '07.

[17]  Kalyanmoy Deb,et al.  Running performance metrics for evolutionary multi-objective optimizations , 2002 .

[18]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[19]  Maoguo Gong,et al.  Multiobjective Immune Algorithm with Nondominated Neighbor-Based Selection , 2008, Evolutionary Computation.

[20]  Gary B. Lamont,et al.  Multiobjective optimization with messy genetic algorithms , 2000, SAC '00.

[21]  Carlos A. Coello Coello,et al.  Multi-objective evolutionary algorithms: a review of the state-of-the-art and some of their applications in chemical engineering , 2007 .

[22]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[23]  Carlos A. Coello Coello,et al.  Solving Multiobjective Optimization Problems Using an Artificial Immune System , 2005, Genetic Programming and Evolvable Machines.

[24]  Qingfu Zhang,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 RM-MEDA: A Regularity Model-Based Multiobjective Estimation of , 2022 .

[25]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[26]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[27]  Andreas Stafylopatis,et al.  An Artificial Immune Network for Multi-objective Optimization , 2010, ICANN.

[28]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[29]  G. Yen,et al.  Dynamic population size in multiobjective evolutionary algorithms , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[30]  Kalyanmoy Deb,et al.  Non-linear Dimensionality Reduction Procedures for Certain Large-Dimensional Multi-objective Optimization Problems: Employing Correntropy and a Novel Maximum Variance Unfolding , 2007, EMO.

[31]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[32]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[33]  Gary B. Lamont,et al.  AN INTRODUCTION TO MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS AND THEIR APPLICATIONS , 2004 .

[34]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[35]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[36]  C. Coello,et al.  Years of Evolutionary Multi-Objective Optimization : What Has Been Done and What Remains To Be Done , 2006 .

[37]  Zheng Xiang Progress of Research on Multi-Objective Evolutionary Algorithms , 2007 .

[38]  C. Coello,et al.  Improving PSO-based Multi-Objective Optimization using Crowding , Mutation and �-Dominance , 2005 .

[39]  Maoguo Gong,et al.  Clonal Selection with Immune Dominance and Anergy Based Multiobjective Optimization , 2005, EMO.

[40]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[41]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[42]  Jesús García,et al.  A cumulative evidential stopping criterion for multiobjective optimization evolutionary algorithms , 2007, GECCO.

[43]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[44]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[45]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[46]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[47]  K. Deb,et al.  On Finding Pareto-Optimal Solutions Through Dimensionality Reduction for Certain Large-Dimensional Multi-Objective Optimization Problems , 2022 .

[48]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[49]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[50]  Fabio Freschi,et al.  VIS: An artificial immune network for multi-objective optimization , 2006 .

[51]  Benjamin Fry,et al.  Visualizing data - exploring and explaining data with the processing environment , 2008 .

[52]  Kalyanmoy Deb,et al.  Multiobjective Problem Solving from Nature: From Concepts to Applications , 2008, Natural Computing Series.

[53]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[54]  Tong Heng Lee,et al.  Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization , 2001, IEEE Trans. Evol. Comput..

[55]  Tong Heng Lee,et al.  Multiobjective Evolutionary Algorithms and Applications , 2005, Advanced Information and Knowledge Processing.

[56]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[57]  E. Hughes Multiple single objective Pareto sampling , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[58]  Marco Laumanns,et al.  Bayesian Optimization Algorithms for Multi-objective Optimization , 2002, PPSN.

[59]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[60]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[61]  Eckart Zitzler,et al.  Are All Objectives Necessary? On Dimensionality Reduction in Evolutionary Multiobjective Optimization , 2006, PPSN.

[62]  Vincenzo Cutello,et al.  A Class of Pareto Archived Evolution Strategy Algorithms Using Immune Inspired Operators for Ab-Initio Protein Structure Prediction , 2005, EvoWorkshops.

[63]  Per Kristian Lehre,et al.  On the effect of populations in evolutionary multi-objective optimization , 2006, GECCO.

[64]  Alexander V. Lotov,et al.  Interactive Decision Maps: Approximation and Visualization of Pareto Frontier , 2004 .

[65]  Yaochu Jin,et al.  Multi-Objective Machine Learning , 2006, Studies in Computational Intelligence.

[66]  Sanjoy Das,et al.  Multi-objective hybrid PSO using µ-fuzzy dominance , 2007, GECCO '07.

[67]  Carlos A. Coello Coello,et al.  Pareto-adaptive -dominance , 2007, Evolutionary Computation.

[68]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[69]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[70]  Kalyanmoy Deb,et al.  Self-Adaptive Genetic Algorithms with Simulated Binary Crossover , 2001, Evolutionary Computation.

[71]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[72]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[73]  David E. Goldberg,et al.  Multiple-objective Bayesian Optimization Algorithm , 2002, GECCO.

[74]  Carlos A. Coello Coello,et al.  Evolutionary Multiobjective Optimization: Current and Future Challenges , 2003 .

[75]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[76]  Qingfu Zhang,et al.  Global multiobjective optimization via estimation of distribution algorithm with biased initialization and crossover , 2007, GECCO '07.

[77]  Qingfu Zhang,et al.  A Multiobjective Differential Evolution Based on Decomposition for Multiobjective Optimization with Variable Linkages , 2006, PPSN.