Influence of oceanographic variability on recruitment of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean

Recruitment estimates for yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean (WCPO), derived from a stock assessment model, are highly variable seasonally, interannually, and over decadal periods. A generalized linear model (GLM) was developed that predicts the variation in yellowfin tuna recruitment in response to a range of oceanographic variables. The GLM model accounted for 54% of the variation in quarterly recruitment for the pe- riod 1980-2003, with the inclusion of seven different oceanographic variables derived from a zone within the northwestern equatorial region of the WCPO. The robustness of the recruitment model was investigated by cross-validation. The GLM was complemented by a cluster analysis approach that identified five principal oceanographic states within the northwest- ern zone selected by the GLM. Incorporation of the recent GLM recruitment indices in the yellowfin tuna stock assessment model is likely to improve the precision of estimates of current and projected (next 1-2 years) biomass and exploitation rates. In a broader context, the recruitment model provides a tool to investigate how yellowfin tuna recruitment might vary in response to short- and long-term variation in the oceanographic conditions of the WCPO. Resume´ : Les estimations du recrutement de l'albacore anageoires jaunes (Thunnus albacares) dans l'ouest et le centre du Pacifique (WCPO), obtenues al'aide d'un modele d'evaluation des stocks, varient fortement en fonction de la saison et de l'annee et au cours des differentes decennies. Nous mettons au point un modele lineaire generalise ´ (GLM) qui predit la variation du recrutement de l'albacore a nageoires jaunes en reaction aune gamme de variables oceanographiques. Le modele GLM explique 54 % de la variation trimestrielle du recrutement pour la periode 1980-2003 avec l'inclusion de sept variables oceanographiques differentes mesurees dans une zone du nord-ouest de la region equatoriale de WCPO. Nous avons etudiela robustesse du modele de recrutement par validation croisee. Le GLM est completepar une methode d'analyse de groupement qui identifie cinq etats oceanographiques principaux dans la zone du nord-ouest retenue par le GLM. L'incorporation des indices recents de recrutement provenant du GLM dans le modele d'evaluation des stocks des albacores anageoires jaunes va vraisemblablement ameliorer la precision des estimations de la biomasse et des taux d'ex- ploitation courants et projetes (sur les prochaines 1-2 annees). Dans un contexte elargi, le modele fournit un outil pour de ´- terminer de quelle maniere le recrutement de l'albacore a nageoires jaunes peut changer en reaction aux variations acourt et a long termes des conditions oceanographiques de WCPO. (Traduit par la Redaction)

[1]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[2]  R. Murtugudde,et al.  Tropical Atlantic variability in a coupled physical–biogeochemical ocean model , 2003 .

[3]  P. Tomlinson,et al.  Population structure of Pacific yellowfin tuna , 1978 .

[4]  A. Wild A review of the biology and fisheries for yellowfin tuna, Thunnus albacares, in the Eastern Pacific Ocean , 1994 .

[5]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[6]  David A. Fournier,et al.  A spatially disaggregated, length-based, age-structured population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean , 2001 .

[7]  C. McClain,et al.  Biogeochemical modelling of the tropical Pacific Ocean. I: Seasonal and interannual variability , 2001 .

[8]  K. A. Bekiashev,et al.  International Commission for the Conservation of Atlantic Tunas (ICCAT) , 1981 .

[9]  P. Lehodey,et al.  El Niño Southern Oscillation and tuna in the western Pacific , 1997, Nature.

[10]  E. Petersen The Western and Central Pacific Tuna Fishery , 2006 .

[11]  Nick Davies,et al.  Stock assessment of yellowfin tuna in the western and central Pacific Ocean , 2005 .

[12]  Patrick Lehodey,et al.  Modelling climate‐related variability of tuna populations from a coupled ocean–biogeochemical‐populations dynamics model , 2003 .

[13]  E. Kraus Modelling and prediction of the upper layers of the ocean , 1977 .

[14]  C. Walters,et al.  Quantitative Fisheries Stock Assessment , 1992, Springer US.

[15]  M. Ioualalen,et al.  Mechanism of the Zonal Displacements of the Pacific Warm Pool: Implications for ENSO , 1996, Science.

[16]  C. McClain,et al.  Biogeochemical modelling of the tropical Pacific Ocean. II: Iron biogeochemistry , 2001 .

[17]  S. Kimura,et al.  Effect of oceanic turbulence on the survival of yellowfin tuna larvae , 2004 .

[18]  J. Picaut,et al.  The oceanic zone of convergence on the eastern edge of the Pacific warm pool: A synthesis of results and implications for El Niño‐Southern Oscillation and biogeochemical phenomena , 2001 .

[19]  Z. Suzuki A review of the biology and fisheries for yellowfin tuna (Thunnus albacares) in the Western and Central Pacific Ocean , 1994 .

[20]  R.I.C. Chris Francis,et al.  Measuring the strength of environment–recruitment relationships: the importance of including predictor screening within cross-validations , 2006 .

[21]  J. Christiana,et al.  Biogeochemical modelling of the tropical Pacific Ocean . II : Iron biogeochemistry , 2001 .

[22]  O. Maury,et al.  Hierarchical interpretation of nonlinear relationships linking yellowfin tuna (Thunnus albacares) distribution to the environment in the Atlantic Ocean , 2001 .

[23]  Mark N. Maunder,et al.  Status of yellowfin tuna in the eastern Pacific Ocean in 2001 and outlook for 2002 , 2002 .