Linear-time general decoding algorithm for the surface code.

A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.

[1]  Roman Orus,et al.  Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems , 2011, 1112.4101.

[2]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[3]  Hector Bombin,et al.  Optimal resources for topological two-dimensional stabilizer codes : Comparative study , 2007 .

[4]  Raymond Laflamme,et al.  Hard decoding algorithm for optimizing thresholds under general Markovian noise , 2016, 1612.02830.

[5]  Hendrik Weimer,et al.  A simple tensor network algorithm for two-dimensional steady states , 2016, Nature Communications.

[6]  T. Xiang,et al.  Accurate determination of tensor network state of quantum lattice models in two dimensions. , 2008, Physical review letters.

[7]  James R. Wootton,et al.  Efficient Markov chain Monte Carlo algorithm for the surface code , 2013, 1302.2669.

[8]  David Poulin,et al.  Tensor-Network Simulations of the Surface Code under Realistic Noise. , 2016, Physical review letters.

[9]  F. Verstraete,et al.  Computational complexity of projected entangled pair states. , 2007, Physical review letters.

[10]  J. Eisert,et al.  Cellular automaton decoders of topological quantum memories in the fault tolerant setting , 2015, 1511.05579.

[11]  M B Hastings Inference from matrix products: a heuristic spin-glass algorithm. , 2008, Physical review letters.

[12]  Stephen D Bartlett,et al.  Ultrahigh Error Threshold for Surface Codes with Biased Noise. , 2017, Physical review letters.

[13]  Martin Suchara,et al.  Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code , 2014, 1405.4883.

[14]  S. Bravyi,et al.  Quantum self-correction in the 3D cubic code model. , 2013, Physical review letters.

[15]  Z. Y. Xie,et al.  Coarse-graining renormalization by higher-order singular value decomposition , 2012, 1201.1144.

[16]  P. Baireuther,et al.  Machine-learning-assisted correction of correlated qubit errors in a topological code , 2017, 1705.07855.

[17]  David Poulin,et al.  Fault-Tolerant Quantum Computing in the Pauli or Clifford Frame with Slow Error Diagnostics , 2017, 1704.06662.

[18]  Xiao-Gang Wen,et al.  Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.

[19]  Giacomo Torlai,et al.  Neural Decoder for Topological Codes. , 2016, Physical review letters.

[20]  G. Evenbly,et al.  Tensor Network Renormalization. , 2014, Physical review letters.

[21]  A. H. Werner,et al.  Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems. , 2014, Physical review letters.

[22]  James R. Wootton,et al.  High threshold error correction for the surface code. , 2012, Physical review letters.

[23]  Michael Levin,et al.  Tensor renormalization group approach to two-dimensional classical lattice models. , 2006, Physical review letters.

[24]  J. Ignacio Cirac,et al.  Unifying projected entangled pair state contractions , 2013, 1311.6696.

[25]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[26]  Maika Takita,et al.  Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. , 2016, Physical review letters.

[27]  Liang Jiang,et al.  Deep Neural Network Probabilistic Decoder for Stabilizer Codes , 2017, Scientific Reports.

[28]  Shuo Yang,et al.  Loop Optimization for Tensor Network Renormalization. , 2015, Physical review letters.

[29]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[30]  Ling Wang,et al.  Time evolution of projected entangled pair states in the single-layer picture , 2011 .

[31]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[32]  Earl T. Campbell,et al.  Cellular-automaton decoders for topological quantum memories , 2014, npj Quantum Information.

[33]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[34]  Hussain Anwar,et al.  Fast fault-tolerant decoder for qubit and qudit surface codes , 2014, 1411.3028.