Surrogate Modeling for Uncertainty Assessment with Application to Aviation Environmental System Models

sampling) present an intractable computational burden. This paper presents a novel surrogate modeling methodology designed specifically for propagating uncertainty from model inputs to model outputs and for performing a global sensitivity analysis, which characterizes the contributions of uncertainties in model inputs to output variance, while maintaining the quantitative rigor of the analysis by providing confidence intervals on surrogate predictions. The approach is developed for a general class of models and is demonstrated on an aircraft emissions prediction model that is being developed and applied to support aviation environmental policy-making. The results demonstrate how the confidence intervals on surrogate predictions can be used to balance the tradeoff between computation time and uncertainty in the estimation of the statistical outputs of interest.

[1]  Seymour Lipschutz,et al.  Schaum's outline of theory and problems of beginning finite mathematics , 2005 .

[2]  Robert Haimes,et al.  Strategies for Multifidelity Optimization with Variable-Dimensional Hierarchical Models , 2006 .

[3]  Robert Haimes,et al.  Multifidelity Optimization for Variable-Complexity Design , 2006 .

[4]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[5]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[6]  Marc E.J. Stettler,et al.  Air quality and public health impacts of UK airports. Part I: Emissions , 2011 .

[7]  S. Rahman Reliability Engineering and System Safety , 2011 .

[8]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[9]  Ilan Kroo,et al.  Two-Level Multifidelity Design Optimization Studies for Supersonic Jets , 2005 .

[10]  G. Grimmett,et al.  Probability and random processes , 2002 .

[11]  A. Saltelli,et al.  An alternative way to compute Fourier amplitude sensitivity test (FAST) , 1998 .

[12]  D. Horvitz,et al.  A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .

[13]  P. A. Newman,et al.  Approximation and Model Management in Aerodynamic Optimization with Variable-Fidelity Models , 2001 .

[14]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[15]  Stefano Tarantola,et al.  Global Sensitivity Analysis: An Introduction , 2005 .

[16]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[17]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[18]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[19]  D. Sorensen,et al.  Approximation of large-scale dynamical systems: an overview , 2004 .

[20]  Harvey M. Wagner,et al.  Global Sensitivity Analysis , 1995, Oper. Res..

[21]  Stefano Tarantola,et al.  A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output , 1999, Technometrics.

[22]  John-Paul Clarke,et al.  System for assessing Aviation's Global Emissions (SAGE), Part 1: Model description and inventory results , 2007 .

[23]  Ilya M. Sobol,et al.  Theorems and examples on high dimensional model representation , 2003, Reliab. Eng. Syst. Saf..

[24]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[25]  Michael S. Eldred,et al.  Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies , 2004 .

[26]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[27]  J. H. Starnes,et al.  Construction of Response Surface Approximations for Design Optimization , 1998 .

[28]  R. A. Doney,et al.  4. Probability and Random Processes , 1993 .

[29]  Steven L. Baughcum,et al.  Scheduled Civil Aircraft Emission Inventories for 1976 and 1984: Database Development and Analysis , 1996 .

[30]  Karen Willcox,et al.  A Bayesian-Based Approach to Multifidelity Multidisciplinary Design Optimization , 2010 .

[31]  Achille Messac,et al.  A computationally efficient metamodeling approach for expensive multiobjective optimization , 2008 .

[32]  K. Berk A Central Limit Theorem for $m$-Dependent Random Variables with Unbounded $m$ , 1973 .

[33]  Stefano Tarantola,et al.  Sensitivity analysis of model output: variance-based methods make the difference , 1997, WSC '97.

[34]  R. Grandhi,et al.  Polynomial Chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability , 2003 .

[35]  Terry Andres,et al.  Sensitivity analysis of model output: an investigation of new techniques , 1993 .