Quantification of Airfoil Geometry-Induced Aerodynamic Uncertainties - Comparison of Approaches

Uncertainty quantification in aerodynamic simulations calls for efficient numerical methods to reduce computational cost, especially for uncertainties caused by random geometry variations which involve a large number of variables. This paper compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and by point collocation, radial basis function and a gradient-enhanced version of kriging, and examines their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry which is parameterized by independent Gaussian variables. The results show that gradient-enhanced surrogate methods achieve better accuracy than direct integration methods with the same computational cost.

[1]  W. Marsden I and J , 2012 .

[2]  Claudia Schillings,et al.  On the influence of robustness measures on shape optimization with stochastic uncertainties , 2015 .

[3]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[4]  Frances Y. Kuo,et al.  Monte Carlo and quasi-Monte Carlo methods 2012 , 2013 .

[5]  Richard P. Dwight,et al.  Algorithmic Developments in TAU , 2005 .

[6]  H. Matthies,et al.  Inverse problems and uncertainty quantification , 2013, 1312.5048.

[7]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[8]  Dishi Liu,et al.  Pivoted Cholesky decomposition by Cross Approximation for efficient solution of kernel systems , 2015, ArXiv.

[9]  Hermann G. Matthies,et al.  Computation of the Response Surface in the Tensor Train data format , 2014, 1406.2816.

[10]  Hester Bijl,et al.  Uncertainty Quantification in Computational Fluid Dynamics , 2013, Lecture Notes in Computational Science and Engineering.

[11]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[12]  Hermann G. Matthies,et al.  Sampling and Low-Rank Tensor Approximation of the Response Surface , 2013 .

[13]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[14]  Nestor V. Queipo,et al.  Efficient Shape Optimization Under Uncertainty Using Polynomial Chaos Expansions and Local Sensitivities , 2006 .

[15]  Ralf Zimmermann,et al.  Asymptotic Behavior of the Likelihood Function of Covariance Matrices of Spatial Gaussian Processes , 2010, J. Appl. Math..

[16]  Wolfgang Nitsche,et al.  New Results in Numerical and Experimental Fluid Mechanics , 1999 .

[17]  Henri Faure,et al.  MONTE-CARLO AND QUASI-MONTE-CARLO METHODS FOR NUMERICAL INTEGRATION , 2001 .

[18]  Richard P. Dwight,et al.  Discrete Adjoint of the Navier-Stokes Equations for Aerodynamic Shape Optimization , 2005 .

[19]  Hermann G. Matthies,et al.  Uncertainties Quantification and Data Compression in numerical Aerodynamics , 2011 .

[20]  N. Wiener The Homogeneous Chaos , 1938 .

[21]  Hermann G. Matthies,et al.  Uncertainty Quantification with Stochastic Finite Elements , 2007 .

[22]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[23]  Claudia Schillings,et al.  Efficient shape optimization for certain and uncertain aerodynamic design , 2011 .

[24]  Wei Chen,et al.  A new level-set based approach to shape and topology optimization under geometric uncertainty , 2010 .

[25]  Hermann G. Matthies,et al.  Low-rank data format for uncertainty quantification , 2010 .

[26]  Colas Schretter,et al.  Monte Carlo and Quasi-Monte Carlo Methods , 2016 .

[27]  Frances Y. Kuo,et al.  Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..

[28]  Stefan Görtz,et al.  Efficient Quantification of Aerodynamic Uncertainty due to Random Geometry Perturbations , 2014 .

[29]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[30]  Dishi Liu,et al.  To Be or Not to Be Intrusive? The Solution of Parametric and Stochastic Equations - the "Plain Vanilla" Galerkin Case , 2013, SIAM J. Sci. Comput..

[31]  J. Pereira,et al.  Surrogate models based on function and derivative values for aerodynamic global optimization , 2010 .

[32]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[33]  Hermann G. Matthies,et al.  Uncertainty Quantification in numerical Aerodynamic via low‐rank Response Surface , 2012 .

[34]  A. Resmini,et al.  Sparse grids‐based stochastic approximations with applications to aerodynamics sensitivity analysis , 2016 .

[35]  Sharon L. Padula,et al.  Aerospace applications of optimization under uncertainty , 2006 .

[36]  K. Giannakoglou,et al.  Aerodynamic shape design using evolutionary algorithms and new gradient-assisted metamodels , 2006 .

[37]  Dishi D. S. Liu A Best Practice Guide: Efficient Quantification of Aerodynamic Uncertainties , 2012 .

[38]  Yew-Soon Ong,et al.  Hybrid evolutionary algorithm with Hermite radial basis function interpolants for computationally expensive adjoint solvers , 2008, Comput. Optim. Appl..

[39]  Stefan Görtz,et al.  Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function , 2013 .

[40]  H. Bijl,et al.  Airfoil Analysis with Uncertain Geometry using the Probabilistic Collocation method , 2008 .

[41]  Hermann G. Matthies,et al.  Parameter Identification in a Probabilistic Setting , 2012, ArXiv.

[42]  W. C. Snyder,et al.  Accuracy estimation for quasi-Monte Carlo simulations , 2000 .

[43]  Robert F. Tichy,et al.  Quasi-Monte Carlo Methods for Numerical Integration: Comparison of Different Low Discrepancy Sequences , 1996, Monte Carlo Methods Appl..

[44]  Jens K. Fassbender,et al.  MEGAFLOW - Numerical Flow Simulation for Aircraft Design , 2005 .

[45]  Hermann G. Matthies,et al.  Application of hierarchical matrices for computing the Karhunen–Loève expansion , 2009, Computing.

[46]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[47]  J. Alonso,et al.  Using gradients to construct cokriging approximation models for high-dimensional design optimization problems , 2002 .

[48]  Hermann G. Matthies,et al.  Sparse Data Representation of Random Fields , 2009 .

[49]  Claudia Schillings,et al.  On the Nature and Treatment of Uncertainties in Aerodynamic Design , 2008 .

[50]  Bernhard Eisfeld,et al.  Management and Minimisation of Uncertainties and Errors in Numerical Aerodynamics : Results of the German Collaborative Project MUNA , 2013 .

[51]  H. Bijl,et al.  A Probabilistic Radial Basis Function Approach for Uncertainty Quantification , 2007 .

[52]  Gene Hou,et al.  EFFECT OF RANDOM GEOMETRIC UNCERTAINTY ON THE COMPUTATIONAL DESIGN OF A 3-D FLEXIBLE WING , 2002 .

[53]  Pierre Sagaut,et al.  Sensitivity of two-dimensional spatially developing mixing layers with respect to uncertain inflow conditions , 2008 .

[54]  Alexander Litvinenko,et al.  Data Sparse Computation of the Karhunen-Loeve Expansion , 2008 .

[55]  Ronald F. Boisvert,et al.  Uncertainty Quantification in Scientific Computing , 2012, IFIP Advances in Information and Communication Technology.

[56]  Alexander Litvinenko,et al.  Kriging and Spatial Design Accelerated by Orders of Magnitude: Combining Low-Rank Covariance Approximations with FFT-Techniques , 2013, Mathematical Geosciences.

[57]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[58]  Hermann G. Matthies,et al.  Parametric and Uncertainty Computations with Tensor Product Representations , 2011, WoCoUQ.