Peculiarities of conventional HDDR process in (Nd,Pr)-Fe-B alloy powders under low hydrogen pressure

[1]  R. Puźniak,et al.  Enhanced coercivity in SmCo5 magnet subjected to hydrogen treatment , 2020 .

[2]  H. Sepehri-Amin,et al.  On the temperature-dependent coercivities of anisotropic Nd-Fe-B magnet , 2020 .

[3]  O. Gutfleisch,et al.  HDDR treatment of Ce-substituted Nd2Fe14B-based permanent magnet alloys - phase structure evolution, intergranular processes and magnetic property development , 2020 .

[4]  Shuai Guo,et al.  Surface nanocrystallization of sintered Nd-Fe-B magnet by HDDR process , 2019, Materials & Design.

[5]  H. Sepehri-Amin,et al.  Development of high coercivity anisotropic Nd-Fe-B/Fe nanocomposite powder using hydrogenation disproportionation desorption recombination process , 2019, Acta Materialia.

[6]  І. Bulyk Application of Hydrogen in the Production of Sintered Anisotropic Nanostructured Magnets from Alloys of Rare-Earth and Transition Metals , 2019, Materials Science.

[7]  S. Sugimoto,et al.  Magnetic anisotropy and crystallographic alignment in Fe and NdH2 during d-HDDR process of Nd-Fe-B-Ga-Nb powders , 2019, AIP Advances.

[8]  B. Dong,et al.  Effect of hydrogen pressure on hydrogen absorption of waste Nd-Fe-B sintered magnets , 2019, Journal of Magnetism and Magnetic Materials.

[9]  H. Sepehri-Amin,et al.  Development of ultra-fine grain sized SmFe12-based powders using hydrogenation disproportionation desorption recombination process , 2019, Acta Materialia.

[10]  J. G. Lee,et al.  Crystallographic alignment of Fe2B and Nd2Fe14B for texture memory in hydrogenation–disproportionation–desorption–recombination-processed Nd–Fe–B powders , 2018 .

[11]  Tianli Zhang,et al.  Effect of ball milling process on coercivity of nanocrystalline SmCo 5 magnets , 2018 .

[12]  Hajime Nakamura,et al.  The current and future status of rare earth permanent magnets , 2017, Scripta Materialia.

[13]  S. Hirosawa,et al.  Advances in Nd-Fe-B Based Permanent Magnets , 2018 .

[14]  O. Gutfleisch,et al.  A systematic study of HDDR processing conditions for the recycling of end-of-life Nd-Fe-B magnets , 2017 .

[15]  E. Jezierska,et al.  Hydrogen disproportionation phase diagram and magnetic properties for Nd15Fe79B6 alloy , 2016 .

[16]  J. G. Lee,et al.  Direct observation of texture memory in hydrogenation–disproportionation–desorption–recombination processed Nd-Fe-B magnets using electron backscatter diffraction , 2016 .

[17]  S. Sugimoto,et al.  Crystallographic alignment in the recombination stage in d-HDDR process of Nd-Fe-B-Ga-Nb powders , 2016 .

[18]  H. Sepehri-Amin,et al.  Mechanism of the texture development in hydrogen-disproportionation–desorption-recombination (HDDR) processed Nd–Fe–B powders , 2015 .

[19]  H. Sepehri-Amin,et al.  Strategy for high-coercivity Nd–Fe–B magnets , 2012 .

[20]  I. R. Harris,et al.  Anisotropic powder from sintered NdFeB magnets by the HDDR processing route , 2012 .

[21]  R. Xiao,et al.  Origin of anisotropy for the HDDR Nd13.5Fe79.5B7 magnetic powders , 2011 .

[22]  Nicola Jones,et al.  Materials science: The pull of stronger magnets , 2011, Nature.

[23]  T. G. Woodcock,et al.  Comparison of local and global texture in HDDR processed Nd―Fe―B magnets , 2011 .

[24]  Christina H. Chen,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.

[25]  G. Han,et al.  Anisotropic HDDR Nd–Fe–B magnetic powders prepared directly from strip casting alloy flakes , 2009 .

[26]  I. Bulyk,et al.  Hydrogen-induced phase transformations in alloys based on Sm Co5 under pressures of up to 650 kPA , 2007 .

[27]  A. Trostianchyn,et al.  Phase transformations in LaNi5−xCox–H2 system , 2005 .

[28]  Y. Honkura,et al.  Texture memory effect of Nd Fe B during hydrogen treatment , 2005 .

[29]  A. Trostianchyn,et al.  Effect of hydrogen on the phase–structure transformations in ZrCrNi alloy , 2004 .

[30]  A. Trostianchyn,et al.  Features of the HDDR process in ZrT2 (T = Cr, Mn, Fe, Co) compounds , 2004 .

[31]  K. Muller,et al.  Memory of texture during HDDR processing of NdFeB , 2003, Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401).

[32]  V. Panasyuk,et al.  Specific Features of Phase Transformations in Lanthanum–Nickel–Aluminum Alloys under the Action of Hydrogen , 2003 .

[33]  I. Bulyk,et al.  Specific Features of Structural Changes in Lanthanum–Nickel–Aluminum Alloys in the Process of Heating in Hydrogen , 2003 .

[34]  S. Sugimoto,et al.  Effect of the disproportionation and recombination stages of the HDDR process on the inducement of anisotropy in Nd–Fe–B magnets , 1999 .

[35]  M. Kubiś,et al.  HIGHLY COERCIVE SMCO5 MAGNETS PREPARED BY A MODIFIED HYDROGENATION-DISPROPORTIONATION-DESORPTION-RECOMBINATION PROCESS , 1999 .

[36]  J. Soubeyroux,et al.  Hydrogen in hard magnetic materials , 1997 .

[37]  I. R. Harris,et al.  Fundamental and practical aspects of the hydrogenation, disproportionation, desorption and recombination process , 1996 .

[38]  Hajime Nakamura,et al.  Effects of additives on hydrogenation, disproportionation, desorption and recombination phenomena in Nd2Fe14B compounds , 1995 .

[39]  I. R. Harris,et al.  Hydrogen absorption/desorption and HDDR studies on Nd16Fe76B8 and Nd11.8Fe82.3B5.9 , 1995 .

[40]  J. Coey,et al.  Giant energy product in nanostructured two-phase magnets. , 1993, Physical review. B, Condensed matter.

[41]  M. Sagawa,et al.  New material for permanent magnets on a base of Nd and Fe (invited) , 1984 .