ON THE MATHEMATICAL THEORY OF THE DYNAMICS OF SWARMS VIEWED AS COMPLEX SYSTEMS

This paper deals with the modeling and simulation of swarms viewed as a living, hence complex, system. The approach is based on methods of kinetic theory and statistical mechanics, where interactions at the microscopic scale are nonlinearly additive and modeled by stochastic games.

[1]  R. Brockett On the control of a flock by a leader , 2010 .

[2]  V. Caselles,et al.  On the entropy conditions for some flux limited diffusion equations , 2011 .

[3]  Hans G. Othmer,et al.  The Diffusion Limit of Transport Equations II: Chemotaxis Equations , 2002, SIAM J. Appl. Math..

[4]  N Bellomo,et al.  Complexity analysis and mathematical tools towards the modelling of living systems. , 2009, Physics of life reviews.

[5]  Lee A. Segel,et al.  On the distribution of dominance in populations of social organisms , 1992 .

[6]  J. Toner,et al.  Flocks, herds, and schools: A quantitative theory of flocking , 1998, cond-mat/9804180.

[7]  M. Alber,et al.  MULTISCALE MODELING OF PSEUDOMONAS AERUGINOSA SWARMING. , 2011, Mathematical models & methods in applied sciences : M3AS.

[8]  T. Niizato,et al.  Metric-topological interaction model of collective behavior , 2011 .

[9]  Bruce P Ayati,et al.  A structured-population model of Proteus mirabilis swarm-colony development , 2004, Journal of mathematical biology.

[10]  P. Hogeweg,et al.  The ontogeny of the social structure in a captive Bombus terrestris colony , 1981, Behavioral Ecology and Sociobiology.

[11]  Nicola Bellomo,et al.  On the Modeling of Traffic and Crowds: A Survey of Models, Speculations, and Perspectives , 2011, SIAM Rev..

[12]  Bai-lian Li,et al.  Exactly Solvable Models of Biological Invasion , 2005 .

[13]  Pierre Degond,et al.  Continuum limit of self-driven particles with orientation interaction , 2007, 0710.0293.

[14]  B. Piccoli,et al.  Time-Evolving Measures and Macroscopic Modeling of Pedestrian Flow , 2008, 0811.3383.

[15]  A. Ōkubo Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. , 1986, Advances in biophysics.

[16]  C. Hui,et al.  Effects of density-dependent dispersal behaviours on the speed and spatial patterns of range expansion in predator–prey metapopulations , 2011 .

[17]  Nicola Bellomo,et al.  On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms , 2011, Networks Heterog. Media.

[18]  Eitan Tadmor,et al.  A New Model for Self-organized Dynamics and Its Flocking Behavior , 2011, 1102.5575.

[19]  C. Hemelrijk,et al.  Self-organised complex aerial displays of thousands of starlings: a model , 2009, 0908.2677.

[20]  Charles Spence,et al.  ‘When Birds of a Feather Flock Together’: Synesthetic Correspondences Modulate Audiovisual Integration in Non-Synesthetes , 2009, PloS one.

[21]  G. Parisi,et al.  Scale-free correlations in starling flocks , 2009, Proceedings of the National Academy of Sciences.

[22]  J. Deneubourg,et al.  Self-organized structures in a superorganism: do ants "behave" like molecules? , 2006 .

[23]  Nicola Bellomo,et al.  From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells ✩ , 2008 .

[24]  Benedetto Piccoli,et al.  Effects of anisotropic interactions on the structure of animal groups , 2009, Journal of mathematical biology.

[25]  B. Perthame,et al.  Waves for an hyperbolic Keller-Segel model and branching instabilities , 2010 .

[26]  R. Goldstein,et al.  Self-concentration and large-scale coherence in bacterial dynamics. , 2004, Physical review letters.

[27]  Daniel Grünbaum,et al.  Non-linear advection-diffusion equations approximate swarming but not schooling populations. , 2008, Mathematical biosciences.

[28]  Leah Edelstein-Keshet,et al.  A Conceptual Model for Milling Formations in Biological Aggregates , 2009, Bulletin of mathematical biology.

[29]  Massimo Fornasier,et al.  A Kinetic Flocking Model with Diffusion , 2010 .

[30]  N. Verstraeten,et al.  Living on a surface: swarming and biofilm formation. , 2008, Trends in microbiology.

[31]  Pierre Degond,et al.  HYDRODYNAMICS OF SELF-ALIGNMENT INTERACTIONS WITH PRECESSION AND DERIVATION OF THE LANDAU–LIFSCHITZ–GILBERT EQUATION , 2012 .

[32]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[33]  Zi-zhen Li,et al.  Effect of diffusion and spatially varying predation risk on the dynamics and equilibrium density of a predator-prey system. , 2002, Journal of theoretical biology.

[34]  Vincent Marceau,et al.  Swarm behavior of self-propelled rods and swimming flagella. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Jesús Rosado,et al.  Asymptotic Flocking Dynamics for the Kinetic Cucker-Smale Model , 2010, SIAM J. Math. Anal..

[36]  H. Othmer,et al.  Models of dispersal in biological systems , 1988, Journal of mathematical biology.

[37]  T Kambara,et al.  Behavior pattern (innate action) of individuals in fish schools generating efficient collective evasion from predation. , 2005, Journal of theoretical biology.

[38]  P. Hogeweg,et al.  Socioinformatic processes: MIRROR modelling methodology , 1985 .

[39]  G. Webb,et al.  AN IN VITRO CELL POPULATION DYNAMICS MODEL INCORPORATING CELL SIZE, QUIESCENCE, AND CONTACT INHIBITION , 2011 .

[40]  T. Powers,et al.  The hydrodynamics of swimming microorganisms , 2008, 0812.2887.

[41]  J. Soler,et al.  QUALITATIVE PROPERTIES OF THE SOLUTIONS OF A NONLINEAR FLUX-LIMITED EQUATION ARISING IN THE TRANSPORT OF MORPHOGENS , 2011 .

[42]  Massimo Fornasier,et al.  Fluid dynamic description of flocking via the Povzner–Boltzmann equation , 2011 .

[43]  Barry D. Hughes,et al.  Modelling Directional Guidance and Motility Regulation in Cell Migration , 2006, Bulletin of mathematical biology.

[44]  Luisa Fermo,et al.  TOWARDS THE MODELING OF VEHICULAR TRAFFIC AS A COMPLEX SYSTEM: A KINETIC THEORY APPROACH , 2012 .

[45]  A. Mogilner,et al.  Mathematical Biology Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation , 2003 .

[46]  Donald L. Koch,et al.  Collective Hydrodynamics of Swimming Microorganisms: Living Fluids , 2011 .

[47]  S. Matter Synchrony, extinction, and dynamics of spatially segregated, heterogeneous populations , 2001 .

[48]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[49]  G. Parisi,et al.  FROM EMPIRICAL DATA TO INTER-INDIVIDUAL INTERACTIONS: UNVEILING THE RULES OF COLLECTIVE ANIMAL BEHAVIOR , 2010 .

[50]  Andrea L. Bertozzi,et al.  Swarming by Nature and by Design , 2007 .

[51]  Berardino D'Acunto,et al.  Qualitative analysis and simulations of a free boundary problem for multispecies biofilm models , 2011, Math. Comput. Model..

[52]  D. Grünbaum,et al.  From individuals to aggregations: the interplay between behavior and physics. , 1999, Journal of theoretical biology.

[53]  A. Bertozzi,et al.  State Transitions and the Continuum Limit for a 2D Interacting, Self-Propelled Particle System , 2006, nlin/0606031.

[54]  Isaac Klapper,et al.  Mathematical Description of Microbial Biofilms , 2010, SIAM Rev..

[55]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[56]  N. Bellomo,et al.  Complexity and mathematical tools toward the modelling of multicellular growing systems , 2010, Math. Comput. Model..

[57]  Juan Soler,et al.  MULTISCALE BIOLOGICAL TISSUE MODELS AND FLUX-LIMITED CHEMOTAXIS FOR MULTICELLULAR GROWING SYSTEMS , 2010 .

[58]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[59]  F. Ritort,et al.  Exactly Solvable Phase Oscillator Models with Synchronization Dynamics , 1998, cond-mat/9803055.

[60]  Mirosław Lachowicz,et al.  Individually-based Markov processes modeling nonlinear systems in mathematical biology , 2011 .

[61]  Felipe Cucker,et al.  ON THE CRITICAL EXPONENT FOR FLOCKS UNDER HIERARCHICAL LEADERSHIP , 2009 .

[62]  L. Segel,et al.  Traveling bands of chemotactic bacteria: a theoretical analysis. , 1971, Journal of theoretical biology.

[63]  W. Wilson,et al.  Dynamics of Age-Structured and Spatially Structured Predator-Prey Interactions: Individual-Based Models and Population-Level Formulations , 1993, The American Naturalist.

[64]  Kai Jin,et al.  Stability of synchronized distributed control of discrete swarm structures , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[65]  Leo R. M. Maas,et al.  A new pressure sensory mechanism for prey detection in birds: the use of principles of seabed dynamics? , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[66]  P. Koumoutsakos,et al.  Particle simulations of morphogenesis , 2011 .

[67]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[68]  H. Pak,et al.  Dynamics of prey-flock escaping behavior in response to predator's attack. , 2006, Journal of theoretical biology.

[69]  Sergio Albeverio,et al.  STOCHASTIC DYNAMICS OF VISCOELASTIC SKEINS: CONDENSATION WAVES AND CONTINUUM LIMITS , 2008 .

[70]  H. Chaté,et al.  Relevance of metric-free interactions in flocking phenomena. , 2010, Physical review letters.

[71]  A. Huth,et al.  The simulation of the movement of fish schools , 1992 .

[72]  C. Hemelrijk,et al.  Self-Organized Shape and Frontal Density of Fish Schools , 2008 .

[73]  L. Edelstein-Keshet,et al.  Complexity, pattern, and evolutionary trade-offs in animal aggregation. , 1999, Science.

[74]  B. Bassler,et al.  Quorum sensing in bacteria. , 2001, Annual review of microbiology.

[75]  Juan Soler,et al.  ON THE ASYMPTOTIC THEORY FROM MICROSCOPIC TO MACROSCOPIC GROWING TISSUE MODELS: AN OVERVIEW WITH PERSPECTIVES , 2012 .

[76]  Leah Edelstein-Keshet,et al.  The Dynamics of Animal Grouping , 2001 .

[77]  C. Daganzo Requiem for second-order fluid approximations of traffic flow , 1995 .