2016 International Land Model Benchmarking (ILAMB) Workshop Report

Atul K. Jain | George Shu Heng Pau | Veronika Eyring | Christopher R. Schwalm | Joshua B. Fisher | Ben Bond-Lamberty | Nancy Y. Kiang | Randal D. Koster | Renu Joseph | Daniel M. Ricciuto | A. Scott Denning | Shawn P. Serbin | Jianyang Xia | Dennis D. Baldocchi | Ankur R. Desai | Forrest M. Hoffman | Nate G. McDowell | Paul R. Moorcroft | Yiqi Luo | Elena Shevliakova | Chonggang Xu | David M. Lawrence | Maoyi Huang | Jiafu Mao | Peter J. Gleckler | Kevin Schaefer | Dorothy Koch | William J. Riley | Charles D. Koven | James T. Randerson | Anders Ahlström | Rosie A. Fisher | Gustaf Hugelius | Martin G. De Kauwe | Gretchen Keppel-Aleks | Andrew G. Slater | Jinyun Tang | Umakant Mishra | Sujay V. Kumar | J. Randerson | D. Lawrence | R. Koster | N. McDowell | Chonggang Xu | N. Kiang | D. Baldocchi | A. Denning | A. Slater | J. Fisher | F. Hoffman | P. Moorcroft | C. Schwalm | K. Schaefer | Maoyi Huang | J. Mao | E. Shevliakova | C. Koven | M. D. Kauwe | A. Desai | D. Ricciuto | V. Eyring | P. Gleckler | Yiqi Luo | B. Bond‐Lamberty | G. Abramowitz | S. Serbin | G. Hugelius | W. Riley | Hongyi Li | R. Fisher | U. Mishra | M. Best | J. Xia | G. Keppel‐Aleks | A. Ahlström | Hyung-jun Kim | G. Pau | Jinyun Tang | Mathew Williams | Renu Joseph | D. Koch | M. J. Best | Gabriel Abramowitz | Hyung-jun Kim | Hongyi Li | Mathew Williams | Yiqi Luo | Hyungjun Kim | B. Bond-Lamberty | A. S. Denning | A. Desai | V. Eyring | J. B. Fisher | R. Fisher | M. Huang | A. K. Jain | H. Kim | R. D. Koster | S. V. Kumar | H. Li | Y. Luo | J. Mao | N. McDowell | U. Mishra | G. S. H. Pau | K. Schaefer | C. R. Schwalm | Maoyi Huang | Hyungjun Kim | Sujay V. Kumar | Hongyi Li | Yiqi Luo

[1]  Laura Painton Swiler,et al.  Soil moisture estimation using tomographic ground penetrating radar in a MCMC–Bayesian framework , 2018, Stochastic Environmental Research and Risk Assessment.

[2]  Yaning Liu,et al.  Implicit sampling combined with reduced order modeling for the inversion of vadose zone hydrological data , 2017, Comput. Geosci..

[3]  J. Jastrow,et al.  Spatial representation of organic carbon and active-layer thickness of high latitude soils in CMIP5 earth system models , 2017 .

[4]  Marvin N. Wright,et al.  SoilGrids250m: Global gridded soil information based on machine learning , 2017, PloS one.

[5]  G. Asrar,et al.  Comparing the Performance of Three Land Models in Global C Cycle Simulations: A Detailed Structural Analysis , 2017 .

[6]  B. Bond‐Lamberty,et al.  Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils , 2016 .

[7]  K. Taylor,et al.  Moving beyond the Total Sea Ice Extent in Gauging Model Biases. , 2016, Journal of climate.

[8]  D. Lawrence,et al.  Process-level model evaluation: A Snow and Heat Transfer Metric , 2016 .

[9]  J.G.B. Leenaars,et al.  WoSIS: providing standardised soil profile data for the world , 2016 .

[10]  Atul K. Jain,et al.  The terrestrial carbon budget of South and Southeast Asia , 2016 .

[11]  P. Čapek,et al.  Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils , 2016 .

[12]  S. Kanae,et al.  Which weather systems are projected to cause future changes in mean and extreme precipitation in CMIP5 simulations? , 2016 .

[13]  Philip A. Townsend,et al.  Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion , 2016 .

[14]  W. Oechel,et al.  A multi-scale comparison of modeled and observed seasonal methane emissions in northern wetlands , 2016 .

[15]  Jitendra Kumar,et al.  Mapping Arctic Plant Functional Type Distributions in the Barrow Environmental Observatory Using WorldView-2 and LiDAR Datasets , 2016, Remote. Sens..

[16]  Pierre Friedlingstein,et al.  C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6 , 2016 .

[17]  Chris Derksen,et al.  LS3MIP (v1.0) Contribution to CMIP6: The Land Surface, Snow and Soil Moisture Model Intercomparison Project Aims, Setup and Expected Outcome. , 2016 .

[18]  Nathan Collier,et al.  Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements , 2016 .

[19]  Benjamin Smith,et al.  Using models to guide field experiments: a priori predictions for the CO2 response of a nutrient‐ and water‐limited native Eucalypt woodland , 2016, Global change biology.

[20]  F. Hoffman,et al.  Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO2 and climate , 2016 .

[21]  D. Lawrence,et al.  Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009 , 2016 .

[22]  Scott V. Ollinger,et al.  Evaluating the Climate Effects of Reforestation in New England Using a Weather Research and Forecasting (WRF) Model Multiphysics Ensemble , 2016 .

[23]  Assessing the use of subgrid land model output to study impacts of land cover change , 2016 .

[24]  Philippe Ciais,et al.  The status and challenge of global fire modelling , 2016 .

[25]  Curt Covey,et al.  Metrics for the Diurnal Cycle of Precipitation: Toward Routine Benchmarks for Climate Models , 2016 .

[26]  Benjamin Smith,et al.  A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas , 2016 .

[27]  L. Swiler,et al.  On the applicability of surrogate‐based Markov chain Monte Carlo‐Bayesian inversion to the Community Land Model: Case studies at flux tower sites , 2016 .

[28]  J. Randerson,et al.  Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions , 2016 .

[29]  A. McGuire,et al.  Estimating heterotrophic respiration at large scales: challenges, approaches, and next steps , 2016 .

[30]  J. Smerdon,et al.  First assessment of continental energy storage in CMIP5 simulations , 2016 .

[31]  P. Dirmeyer,et al.  The plumbing of land surface models: is poor performance a result of methodology or data quality? , 2016, Journal of hydrometeorology.

[32]  C. Schmullius,et al.  Large‐scale variation in boreal and temperate forest carbon turnover rate related to climate , 2016 .

[33]  D. Grossman GLOBAL CHANGE. Amazon rainforest to get a growth check. , 2016, Science.

[34]  Charles Doutriaux,et al.  A More Powerful Reality Test for Climate Models , 2016 .

[35]  J. Randerson,et al.  International land Model Benchmarking (ILAMB) Package v001.00 , 2016 .

[36]  Maoyi Huang,et al.  Classification of hydrological parameter sensitivity and evaluation of parameter transferability across 431 US MOPEX basins , 2016 .

[37]  N. Batjes Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks , 2016 .

[38]  W. Oechel,et al.  Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America , 2016, Global change biology.

[39]  Yiqi Luo,et al.  Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau , 2016 .

[40]  George C. Hurtt,et al.  The Land Use Model Intercomparison Project (LUMIP): Rationale and experimental design , 2016 .

[41]  S. Seneviratne,et al.  Comparative assessment of mid-latitude land-cover change effects on temperature in historical LUCID and CMIP5 simulations , 2016 .

[42]  Thomas Kätterer,et al.  Modeling coupled enzymatic and solute transport controls on decomposition in drying soils , 2016 .

[43]  Pierre Friedlingstein,et al.  The terrestrial biosphere as a net source of greenhouse gases to the atmosphere , 2016, Nature.

[44]  Ying Wang,et al.  Transit times and mean ages for nonautonomous and autonomous compartmental systems , 2016, Journal of Mathematical Biology.

[45]  J. Pelletier,et al.  A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling , 2016 .

[46]  Joel A. Granados,et al.  Using phenocams to monitor our changing Earth: toward a global phenocam network , 2016 .

[47]  Steven W. Running,et al.  Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization , 2016 .

[48]  Atul K. Jain,et al.  Global change pressures on soils from land use and management , 2016, Global change biology.

[49]  Paul A. Dirmeyer,et al.  Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling , 2016 .

[50]  Sujay V. Kumar,et al.  Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions. , 2016, Journal of hydrometeorology.

[51]  Dean N. Williams Working Group on Virtual Data Integration , 2016 .

[52]  A. King,et al.  Evaluating the Community Land Model in a pine stand with shading manipulations and 13 CO 2 labeling , 2016 .

[53]  Chaopeng Shen,et al.  Accurate and efficient prediction of fine‐resolution hydrologic and carbon dynamic simulations from coarse‐resolution models , 2016 .

[54]  W. Riley,et al.  A Hybrid Reduced‐Order Model of Fine‐Resolution Hydrologic Simulations at a Polygonal Tundra Site , 2016 .

[55]  Liang Feng,et al.  The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times , 2016, Proceedings of the National Academy of Sciences.

[56]  Yujie He,et al.  Toward more realistic projections of soil carbon dynamics by Earth system models , 2016 .

[57]  J. Randerson,et al.  Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century , 2015, Science.

[58]  Edward J. Kim,et al.  Evaluation of the Snow Simulations from the Community Land Model, Version 4 (CLM4) , 2016 .

[59]  Anja Rammig,et al.  Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. , 2016, The New phytologist.

[60]  R. N. Juárez Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models , 2015 .

[61]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[62]  Clayton C. Kingdon,et al.  Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties. , 2015, Ecological applications : a publication of the Ecological Society of America.

[63]  M. Kleber,et al.  The contentious nature of soil organic matter , 2015, Nature.

[64]  Jitendra Kumar,et al.  Characterization and Classification of Vegetation Canopy Structure and Distribution within the Great Smoky Mountains National Park Using LiDAR , 2015, 2015 IEEE International Conference on Data Mining Workshop (ICDMW).

[65]  Nate G. McDowell,et al.  Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED) , 2015 .

[66]  David M. Lawrence,et al.  A GRACE‐based assessment of interannual groundwater dynamics in the Community Land Model , 2015 .

[67]  Thuy Le Toan,et al.  Computer and remote‐sensing infrastructure to enhance large‐scale testing of individual‐based forest models , 2015 .

[68]  C. Sierra,et al.  A general mathematical framework for representing soil organic matter dynamics , 2015 .

[69]  Christine A. Shoemaker,et al.  CH 4 parameter estimation in CLM4.5bgc using surrogate global optimization , 2015 .

[70]  Steven M. Quiring,et al.  Comparison of NLDAS-2 Simulated and NASMD Observed Daily Soil Moisture. Part I: Comparison and Analysis , 2015 .

[71]  J. Six,et al.  Soil carbon storage controlled by interactions between geochemistry and climate , 2015 .

[72]  Yujie He,et al.  Explicitly representing soil microbial processes in Earth system models , 2015 .

[73]  T. Oki,et al.  Disruption of hydroecological equilibrium in southwest Amazon mediated by drought , 2015 .

[74]  Veronika Eyring,et al.  Evolving Obs4MIPs to Support Phase 6 of the Coupled Model Intercomparison Project (CMIP6) , 2015 .

[75]  Clayton C. Kingdon,et al.  Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy , 2015 .

[76]  Matthew J. Smith,et al.  Responses of two nonlinear microbial models to warming and increased carbon input , 2015 .

[77]  Simon Read,et al.  ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP , 2015 .

[78]  Atul K. Jain,et al.  Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends , 2015, Environmental Research Letters.

[79]  A. Witze Minnesota bog study turns up the heat on peat , 2015, Nature.

[80]  K. Schaefer,et al.  A parameterization of respiration in frozen soils based on substrate availability , 2015 .

[81]  Elena Shevliakova,et al.  Contrasting Local versus Regional Effects of Land-Use-Change-Induced Heterogeneity on Historical Climate: Analysis with the GFDL Earth System Model , 2015 .

[82]  W. Riley,et al.  Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks , 2015 .

[83]  C. Fletcher,et al.  Quantifying the skill of CMIP5 models in simulating seasonal albedo and snow cover evolution , 2015 .

[84]  G. Bonan,et al.  Representing life in the Earth system with soil microbial functional traits in the MIMICS model , 2015 .

[85]  Atul K. Jain,et al.  Toward “optimal” integration of terrestrial biosphere models , 2015 .

[86]  Daniel Walton,et al.  A Hybrid Dynamical–Statistical Downscaling Technique. Part I: Development and Validation of the Technique , 2015 .

[87]  Jennifer Pett-Ridge,et al.  Mineral protection of soil carbon counteracted by root exudates , 2015 .

[88]  William R. Wieder,et al.  Future productivity and carbon storage limited by terrestrial nutrient availability , 2015 .

[89]  Atul K. Jain,et al.  Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions , 2015, Global biogeochemical cycles.

[90]  João Paulo Ramos Teixeira,et al.  Remote sensing of drought: Progress, challenges and opportunities , 2015 .

[91]  P. Dirmeyer,et al.  The Plumbing of Land Surface Models: Benchmarking Model Performance , 2015 .

[92]  Benjamin Smith,et al.  Importance of vegetation dynamics for future terrestrial carbon cycling , 2015 .

[93]  Atul K. Jain,et al.  Using ecosystem experiments to improve vegetation models , 2015 .

[94]  Markus Reichstein,et al.  Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts , 2015, Global change biology.

[95]  S. Malyshev,et al.  Scaling from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height-structured competition , 2015 .

[96]  Matthew F. McCabe,et al.  Recent reversal in loss of global terrestrial biomass , 2015 .

[97]  P. Cox,et al.  Observing terrestrial ecosystems and the carbon cycle from space , 2015, Global change biology.

[98]  M. Rossini,et al.  Solar‐induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest , 2015 .

[99]  E. Constantinescu,et al.  Crop physiology calibration in the CLM , 2015 .

[100]  Daniel M. Ricciuto,et al.  Predicting long‐term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ? , 2015 .

[101]  S. Reed,et al.  Urgent need for warming experiments in tropical forests , 2015, Global change biology.

[102]  Shuangcheng Li,et al.  Local cooling and warming effects of forests based on satellite observations , 2015, Nature Communications.

[103]  C. Koven,et al.  Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests , 2015 .

[104]  Roberta E. Martin,et al.  Quantifying forest canopy traits: Imaging spectroscopy versus field survey , 2015 .

[105]  Michael C Dietze,et al.  Model-data assimilation of multiple phenological observations to constrain and predict leaf area index. , 2015, Ecological applications : a publication of the Ecological Society of America.

[106]  N. Goodwin,et al.  Bridging the Gap Between Deterministic and Probabilistic Uncertainty Quantification Using Advanced Proxy Based Methods , 2015, ANSS 2015.

[107]  P. Blanken,et al.  Joint control of terrestrial gross primary productivity by plant phenology and physiology , 2015, Proceedings of the National Academy of Sciences.

[108]  Ranga B. Myneni,et al.  Recent trends and drivers of regional sources and sinks of carbon dioxide , 2015 .

[109]  Arun Kumar,et al.  Eurasian snow cover variability and links to winter climate in the CMIP5 models , 2015, Climate Dynamics.

[110]  Matthew J. Smith,et al.  Predictability of the terrestrial carbon cycle , 2015, Global change biology.

[111]  Khachik Sargsyan,et al.  Bayesian Calibration of the Community Land Model Using Surrogates , 2012, SIAM/ASA J. Uncertain. Quantification.

[112]  George P. Petropoulos,et al.  Surface soil moisture retrievals from remote sensing: Current status, products & future trends , 2015 .

[113]  William J. Riley,et al.  Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions , 2015 .

[114]  Theresa M. Crimmins,et al.  Assessing accuracy in citizen science-based plant phenology monitoring , 2015, International Journal of Biometeorology.

[115]  W. Riley,et al.  Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models , 2014 .

[116]  Peter E. Thornton,et al.  Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC) , 2014 .

[117]  D. Baldocchi,et al.  Measuring fluxes of trace gases and energy between ecosystems and the atmosphere – the state and future of the eddy covariance method , 2014, Global change biology.

[118]  Richard P. Phillips,et al.  Microbe-driventurnoverosetsminer al-mediated storage of soil carbon under elevated CO 2 , 2014 .

[119]  Guido Grosse,et al.  Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps , 2014 .

[120]  James T Randerson,et al.  Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2 , 2014, Global biogeochemical cycles.

[121]  Duane E. Waliser,et al.  Satellite Observations for CMIP5: The Genesis of Obs4MIPs , 2014 .

[122]  Dean N. Williams Visualization and Analysis Tools for Ultrascale Climate Data , 2014 .

[123]  Maurizio Santoro,et al.  Global covariation of carbon turnover times with climate in terrestrial ecosystems , 2014, Nature.

[124]  Corinne Le Quéré,et al.  Persistent growth of CO2 emissions and implications for reaching climate targets , 2014 .

[125]  Elena Shevliakova,et al.  An Enhanced Model of Land Water and Energy for Global Hydrologic and Earth-System Studies , 2014 .

[126]  George Shu Heng Pau,et al.  A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape , 2014 .

[127]  Markus Reichstein,et al.  Linking plant and ecosystem functional biogeography , 2014, Proceedings of the National Academy of Sciences.

[128]  P. Reich,et al.  Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections , 2014, Proceedings of the National Academy of Sciences.

[129]  R. Q. Thomas,et al.  A model using marginal efficiency of investment to analyze carbon and nitrogen interactions in terrestrial ecosystems (ACONITE Version 1) , 2014 .

[130]  P. Ciais,et al.  Historical land-use induced evapotranspiration changes estimated from present-day observations and reconstructed land-cover maps , 2014 .

[131]  G. Balsamo,et al.  The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA‐Interim reanalysis data , 2014 .

[132]  Meghan L. Avolio,et al.  Toward a better integration of biological data from precipitation manipulation experiments into Earth system models , 2014 .

[133]  G. Heuvelink,et al.  SoilGrids1km — Global Soil Information Based on Automated Mapping , 2014, PloS one.

[134]  S. Kanae,et al.  Climatological characteristics of fronts in the western North Pacific based on surface weather charts , 2014 .

[135]  C. Schwalm,et al.  NACP MsTMIP Summary of Model Structure and Characteristics , 2014 .

[136]  Dipankar Dwivedi,et al.  Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics , 2014 .

[137]  Wei Gong,et al.  Multi-objective parameter optimization of common land model using adaptive surrogate modeling , 2014 .

[138]  A. Porporato,et al.  A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils , 2014 .

[139]  W. Post,et al.  NACP MsTMIP: Global and North American Driver Data for Multi-Model Intercomparison , 2014 .

[140]  Atul K. Jain,et al.  Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites , 2014, The New phytologist.

[141]  J. Six,et al.  Soil aggregation in a semiarid soil amended with composted and non-composted sewage sludge—A field experiment , 2014 .

[142]  G. Bonan Connecting mathematical ecosystems, real-world ecosystems, and climate science. , 2014, The New phytologist.

[143]  Atul K. Jain,et al.  Comprehensive ecosystem model‐data synthesis using multiple data sets at two temperate forest free‐air CO2 enrichment experiments: Model performance at ambient CO2 concentration , 2014 .

[144]  M. S. Moran,et al.  Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence , 2014, Proceedings of the National Academy of Sciences.

[145]  R. Moss,et al.  Climate model intercomparisons: Preparing for the next phase , 2014 .

[146]  Kenton McHenry,et al.  A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes , 2014 .

[147]  M. Reichstein,et al.  The use of radiocarbon to constrain current and future soil organic matter turnover and transport in a temperate forest , 2014 .

[148]  Roland Hiederer,et al.  Global soil carbon: understanding and managing the largest terrestrial carbon pool , 2014 .

[149]  B. Elberling,et al.  Circumpolar assessment of permafrost C quality and its vulnerability over time using long‐term incubation data , 2014, Global change biology.

[150]  Atul K. Jain,et al.  Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies , 2014, The New phytologist.

[151]  Pierre Friedlingstein,et al.  Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks , 2014 .

[152]  Yiqi Luo,et al.  Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity , 2014, Biogeochemistry.

[153]  G E Hammond,et al.  Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN , 2014, Water resources research.

[154]  Peter E. Thornton,et al.  DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING , 2014 .

[155]  W. Post,et al.  The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design , 2013 .

[156]  Matthew J. Smith,et al.  Oscillatory behavior of two nonlinear microbial models of soil carbon decomposition , 2013 .

[157]  W. Riley,et al.  A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition , 2013 .

[158]  Yu Sun,et al.  Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model , 2013 .

[159]  J. Randerson,et al.  Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models , 2013 .

[160]  Atul K. Jain,et al.  Impact of large‐scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data , 2013 .

[161]  Yinghai Ke,et al.  Uncertainty Analysis of Runoff Simulations and Parameter Identifiability in the Community Land Model: Evidence from MOPEX Basins , 2013 .

[162]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[163]  Robert B. Cook,et al.  The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data , 2013 .

[164]  R. Q. Thomas,et al.  Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations , 2013, Global change biology.

[165]  William R. Wieder,et al.  Global soil carbon projections are improved by modelling microbial processes , 2013 .

[166]  Yadvinder Malhi,et al.  Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. , 2013, The New phytologist.

[167]  S. Caldararu,et al.  Phenology as a strategy for carbon optimality: a global model , 2013 .

[168]  P. Cox,et al.  Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models , 2013 .

[169]  L. Hinzman,et al.  Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges , 2013 .

[170]  X. Zeng,et al.  Soil microbial respiration from observations and Earth System Models , 2013 .

[171]  R. Houghton,et al.  Keeping management effects separate from environmental effects in terrestrial carbon accounting , 2013, Global change biology.

[172]  Rob Kooper,et al.  On improving the communication between models and data. , 2013, Plant, cell & environment.

[173]  Y. Carrillo,et al.  Warming Reduces Carbon Losses from Grassland Exposed to Elevated Atmospheric Carbon Dioxide , 2013, PloS one.

[174]  S. Seneviratne,et al.  Climate extremes and the carbon cycle , 2013, Nature.

[175]  Hans Peter Schmid,et al.  Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise , 2013, Nature.

[176]  J. Randerson,et al.  Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries , 2013 .

[177]  Jianyang Xia,et al.  Traceable components of terrestrial carbon storage capacity in biogeochemical models , 2013, Global change biology.

[178]  M. Lomas,et al.  Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends , 2013, Global change biology.

[179]  Richard T. Mills,et al.  Representativeness-based sampling network design for the State of Alaska , 2013, Landscape Ecology.

[180]  Atul K. Jain,et al.  Forest water use and water use efficiency at elevated CO2: a model‐data intercomparison at two contrasting temperate forest FACE sites , 2013, Global change biology.

[181]  Martyn P. Clark,et al.  Uncertainty in seasonal snow reconstruction: Relative impacts of model forcing and image availability , 2013 .

[182]  Michael C. Dietze,et al.  Facilitating feedbacks between field measurements and ecosystem models , 2013 .

[183]  Simon Scheiter,et al.  Next-generation dynamic global vegetation models: learning from community ecology. , 2013, The New phytologist.

[184]  Markus Reichstein,et al.  Detection and attribution of large spatiotemporal extreme events in Earth observation data , 2013, Ecol. Informatics.

[185]  V. Brovkin,et al.  Impact of soil moisture‐climate feedbacks on CMIP5 projections: First results from the GLACE‐CMIP5 experiment , 2013 .

[186]  R. Knutti,et al.  Robustness and uncertainties in the new CMIP5 climate model projections , 2013 .

[187]  Charles D. Koven,et al.  Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models , 2013 .

[188]  J. Randerson,et al.  Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4) , 2013 .

[189]  P. Cox,et al.  Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability , 2013, Nature.

[190]  Yiqi Luo,et al.  Separating soil CO2 efflux into C-pool-specific decay rates via inverse analysis of soil incubation data , 2013, Oecologia.

[191]  Emil M. Constantinescu,et al.  Calibration of the Crop model in the Community Land Model , 2013 .

[192]  Hanqin Tian,et al.  Terrestrial carbon balance in tropical Asia: Contribution from cropland expansion and land management , 2013 .

[193]  Ian J. Wright,et al.  Impacts of trait variation through observed trait–climate relationships on performance of an Earth system model: a conceptual analysis , 2012 .

[194]  Corinne Le Quéré,et al.  Carbon emissions from land use and land-cover change , 2012 .

[195]  D. Lawrence,et al.  Diagnosing Present and Future Permafrost from Climate Models , 2012 .

[196]  D. S. Ward,et al.  Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1) , 2012 .

[197]  A. Desai,et al.  Modelling contrasting responses of wetland productivity to changes in water table depth , 2012 .

[198]  J. Randerson,et al.  Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations , 2012 .

[199]  Philippe Ciais,et al.  A framework for benchmarking land models , 2012 .

[200]  P. Ciais,et al.  Inferring past land use-induced changes in surface albedo from satellite observations: a useful tool to evaluate model simulations , 2012 .

[201]  William J. Riley,et al.  CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation, and application , 2012 .

[202]  S. Li,et al.  The carbon budget of terrestrial ecosystems in East Asia over the last two decades , 2012 .

[203]  Heikki Haario,et al.  Efficient MCMC for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection , 2012 .

[204]  F. Dijkstra,et al.  Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature , 2012, Global change biology.

[205]  Guang Lin,et al.  Sensitivity of surface flux simulations to hydrologic parameters based on an uncertainty quantification framework applied to the Community Land Model , 2012 .

[206]  Kristopher D. Johnson,et al.  Field information links permafrost carbon to physical vulnerabilities of thawing , 2012 .

[207]  Gerhard Krinner,et al.  An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models , 2012 .

[208]  M. D. Schwartz,et al.  From Caprio's lilacs to the USA National Phenology Network , 2012 .

[209]  E. Davidson,et al.  Using model‐data fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling , 2012 .

[210]  Jizhong Zhou,et al.  Carbon quality and the temperature sensitivity of soil organic carbon decomposition in a tallgrass prairie , 2012 .

[211]  Andrew J. Pitman,et al.  Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations , 2012 .

[212]  Kenneth W. Harrison,et al.  Land surface Verification Toolkit (LVT) – a generalized framework for land surface model evaluation , 2012 .

[213]  Gab Abramowitz,et al.  Towards a public, standardized, diagnostic benchmarking system for land surface models , 2012 .

[214]  Markus Reichstein,et al.  The role of trace gas flux networks in the biogeosciences , 2012 .

[215]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[216]  Markus Reichstein,et al.  Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers , 2012 .

[217]  S. Levis,et al.  Evaluation of the New CNDV Option of the Community Land Model: Effects of Dynamic Vegetation and Interactive Nitrogen on CLM4 Means and Variability* , 2012 .

[218]  Nate G. McDowell,et al.  Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics , 2012, PloS one.

[219]  Victor Brovkin,et al.  Determining robust impacts of land-use induced land-cover changes on surface climate over North America and Eurasia; Results from the first set of LUCID experiments , 2012 .

[220]  Peter E. Thornton,et al.  Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change and Wood Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100 , 2012 .

[221]  Craig C. Brandt,et al.  Relation between Soil Order and Sorption of Dissolved Organic Carbon in Temperate Subsoils , 2012 .

[222]  F. Landerer,et al.  Accuracy of scaled GRACE terrestrial water storage estimates , 2012 .

[223]  D. Easterling,et al.  Changes in climate extremes and their impacts on the natural physical environment , 2012 .

[224]  David M. Lawrence,et al.  Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model , 2012 .

[225]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[226]  H. Matthews,et al.  A climate sensitivity estimate using Bayesian fusion of instrumental observations and an Earth System model , 2012 .

[227]  Keith W. Oleson,et al.  Contrasting urban and rural heat stress responses to climate change , 2012 .

[228]  Dennis D. Baldocchi,et al.  Ecological controls on net ecosystem productivity of a seasonally dry annual grassland under current and future climates: Modelling with ecosys , 2012 .

[229]  E. Davidson,et al.  The Dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales , 2012 .

[230]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[231]  Hideki Kobayashi,et al.  Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales , 2011 .

[232]  T. A. Black,et al.  Observed increase in local cooling effect of deforestation at higher latitudes , 2011, Nature.

[233]  Niklaus E. Zimmermann,et al.  Plant functional type mapping for earth system models , 2011 .

[234]  N. Diffenbaugh,et al.  Higher Hydroclimatic Intensity with Global Warming , 2011 .

[235]  D. Manning,et al.  Persistence of soil organic matter as an ecosystem property , 2011, Nature.

[236]  W. J. Shuttleworth,et al.  Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century , 2011 .

[237]  J. Rougier,et al.  Precalibrating an intermediate complexity climate model , 2018 .

[238]  Y. Yamagata,et al.  Carbon budget of tropical forests in Southeast Asia and the effects of deforestation: an approach using a process-based model and field measurements. , 2011 .

[239]  Christopher B. Field,et al.  Forest biomass allometry in global land surface models , 2011 .

[240]  Mark A. Liniger,et al.  A global reanalysis of vegetation phenology , 2011 .

[241]  A. Arneth,et al.  Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations , 2011 .

[242]  S. Higgins,et al.  TRY – a global database of plant traits , 2011, Global Change Biology.

[243]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[244]  P. Ciais,et al.  Permafrost carbon-climate feedbacks accelerate global warming , 2011, Proceedings of the National Academy of Sciences.

[245]  Maosheng Zhao,et al.  Improvements to a MODIS global terrestrial evapotranspiration algorithm , 2011 .

[246]  M. Razinger,et al.  Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power , 2011 .

[247]  P. Dirmeyer,et al.  Snow‐atmosphere coupling strength in a global atmospheric model , 2011 .

[248]  Shenfeng Fei,et al.  Ecological forecasting and data assimilation in a data-rich era. , 2011, Ecological applications : a publication of the Ecological Society of America.

[249]  Katalin Csill'ery,et al.  abc: an R package for approximate Bayesian computation (ABC) , 2011, 1106.2793.

[250]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[251]  S. Kanae,et al.  A physically based description of floodplain inundation dynamics in a global river routing model , 2011 .

[252]  W. Post,et al.  Parameter and prediction uncertainty in an optimized terrestrial carbon cycle model: Effects of constraining variables and data record length , 2011 .

[253]  J. Overpeck,et al.  Climate Data Challenges in the 21st Century , 2011, Science.

[254]  Matthew B. Jones,et al.  Challenges and Opportunities of Open Data in Ecology , 2011, Science.

[255]  R. Houghton,et al.  Gross CO2 fluxes from land-use change: implications for reducing global emissions and increasing sinks , 2011 .

[256]  Yiqi Luo,et al.  Dynamic disequilibrium of the terrestrial carbon cycle under global change. , 2011, Trends in ecology & evolution.

[257]  K. Schaefer,et al.  Amount and timing of permafrost carbon release in response to climate warming , 2011 .

[258]  B. Hungate,et al.  Probing carbon flux patterns through soil microbial metabolic networks using parallel position-specific tracer labeling , 2011 .

[259]  Jian Huang,et al.  Data Mining in Earth System Science (DMESS 2011) , 2011, ICCS.

[260]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[261]  Erkki Oja,et al.  Estimation of ECHAM5 climate model closure parameters with adaptive MCMC , 2010 .

[262]  Richard D. Wilkinson,et al.  Bayesian Calibration of Expensive Multivariate Computer Experiments , 2010 .

[263]  S. Seneviratne,et al.  Contrasting response of European forest and grassland energy exchange to heatwaves , 2010 .

[264]  Timothy M. Lenton,et al.  A probabilistic calibration of climate sensitivity and terrestrial carbon change in GENIE-1 , 2010 .

[265]  F. Woodward,et al.  Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate , 2010, Science.

[266]  George Kuczera,et al.  A limited‐memory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models , 2010 .

[267]  O. François,et al.  Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.

[268]  F. M. Hoffman,et al.  Fire dynamics during the 20th century simulated by the Community Land Model , 2010 .

[269]  S. Seneviratne,et al.  Investigating soil moisture-climate interactions in a changing climate: A review , 2010 .

[270]  J. Famiglietti,et al.  Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data , 2010 .

[271]  Dorothy K. Hall,et al.  Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product , 2010 .

[272]  Andrew D. Friend,et al.  Carbon and nitrogen cycle dynamics in the O‐CN land surface model: 1. Model description, site‐scale evaluation, and sensitivity to parameter estimates , 2010 .

[273]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[274]  Pierre Friedlingstein,et al.  Terrestrial nitrogen feedbacks may accelerate future climate change , 2010 .

[275]  A. Arneth,et al.  Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation , 2010 .

[276]  金 炯俊 Role of rivers in the spatiotemporal variations of terrestrial hydrological circulation , 2010 .

[277]  J. Randerson,et al.  Technical Description of version 4.0 of the Community Land Model (CLM) , 2010 .

[278]  Tony Hey,et al.  The Fourth Paradigm: Data-Intensive Scientific Discovery , 2009 .

[279]  Rachel M. Law,et al.  A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere , 2009 .

[280]  A. Chorin,et al.  Implicit sampling for particle filters , 2009, Proceedings of the National Academy of Sciences.

[281]  Peter E. Thornton,et al.  Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models , 2009 .

[282]  Taikan Oki,et al.  Role of rivers in the seasonal variations of terrestrial water storage over global basins , 2009 .

[283]  M. Williams,et al.  Improving land surface models with FLUXNET data , 2009 .

[284]  Jonathan Rougier,et al.  Analyzing the Climate Sensitivity of the HadSM3 Climate Model Using Ensembles from Different but Related Experiments , 2009 .

[285]  A. McGuire,et al.  Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks. , 2009, Ecological applications : a publication of the Ecological Society of America.

[286]  J. Randerson,et al.  Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance , 2009 .

[287]  S. Wofsy,et al.  Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2 , 2009 .

[288]  Taro Takahashi,et al.  Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data , 2009 .

[289]  A. Taylor,et al.  Widespread Increase of Tree Mortality Rates in the Western United States , 2009, Science.

[290]  A. Denning,et al.  Remote sensing data assimilation for a prognostic phenology model , 2008 .

[291]  Dorin Drignei,et al.  PARAMETER ESTIMATION FOR COMPUTATIONALLY INTENSIVE NONLINEAR REGRESSION WITH AN APPLICATION TO CLIMATE MODELING , 2008, 0901.3665.

[292]  Benjamin Smith,et al.  CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests , 2008 .

[293]  S. Pacala,et al.  Predictive Models of Forest Dynamics , 2008, Science.

[294]  Xiangjun Tian,et al.  A land surface soil moisture data assimilation framework in consideration of the model subgrid-scale heterogeneity and soil water thawing and freezing , 2008 .

[295]  Yiqi Luo,et al.  Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors , 2008 .

[296]  D. Higdon,et al.  Computer Model Calibration Using High-Dimensional Output , 2008 .

[297]  Charles Doutriaux,et al.  Performance metrics for climate models , 2008 .

[298]  Yalchin Efendiev,et al.  An Efficient Two-Stage Sampling Method for Uncertainty Quantification in History Matching Geological Models , 2008 .

[299]  D. Baldocchi ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems , 2008 .

[300]  K. Davis,et al.  Sensitivity, uncertainty and time dependence of parameters in a complex land surface model , 2008 .

[301]  R. O L A D A I R * W, W I L L I A,et al.  Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates , 2008 .

[302]  Peter E. Thornton,et al.  Influence of carbon‐nitrogen cycle coupling on land model response to CO2 fertilization and climate variability , 2007 .

[303]  Markus Reichstein,et al.  CO2 balance of boreal, temperate, and tropical forests derived from a global database , 2007 .

[304]  R. Burns,et al.  Interactions between Proteins and Soil Mineral Surfaces: Environmental and Health Consequences , 2007 .

[305]  Y. Malhi,et al.  The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment , 2007 .

[306]  O. Hagolle,et al.  LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm , 2007 .

[307]  A. Hall,et al.  What Controls the Strength of Snow-Albedo Feedback? , 2007 .

[308]  F. Aires,et al.  Global inundation dynamics inferred from multiple satellite observations, 1993–2000 , 2007 .

[309]  W. Parton,et al.  Projected ecosystem impact of the Prairie Heating and CO2 Enrichment experiment. , 2007, The New phytologist.

[310]  C. K. Baru,et al.  Environmental Monitoring Network for India , 2007, Science.

[311]  Christine A. Shoemaker,et al.  Improved Strategies for Radial basis Function Methods for Global Optimization , 2007, J. Glob. Optim..

[312]  Stefano Tarantola,et al.  Sensitivity analysis practices: Strategies for model-based inference , 2006, Reliab. Eng. Syst. Saf..

[313]  Sujay V. Kumar,et al.  Land information system: An interoperable framework for high resolution land surface modeling , 2006, Environ. Model. Softw..

[314]  E. Wood,et al.  Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling , 2006 .

[315]  Alex Hall,et al.  Assessing Snow Albedo Feedback in Simulated Climate Change , 2022 .

[316]  Jouni Pulliainen,et al.  Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations , 2006 .

[317]  E. Davidson,et al.  Temperature sensitivity of soil carbon decomposition and feedbacks to climate change , 2006, Nature.

[318]  Q. Duana,et al.  Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops , 2006 .

[319]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[320]  Christopher B Field,et al.  Responses of Grassland Production to Single and Multiple Global Environmental Changes , 2005, PLoS biology.

[321]  Shaun Quegan,et al.  Model–data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications , 2005 .

[322]  M. R. R A U Pa C H,et al.  Model – data synthesis in terrestrial carbon observation : methods , data requirements and data uncertainty specifications , 2005 .

[323]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[324]  D. Roberts,et al.  Using Imaging Spectroscopy to Study Ecosystem Processes and Properties , 2004 .

[325]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[326]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[327]  S. Paton,et al.  ARE LIANAS INCREASING IN IMPORTANCE IN TROPICAL FORESTS? A 17‐YEAR RECORD FROM PANAMA , 2004 .

[328]  S. U S A N T R U M B O R E Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration , 2004 .

[329]  Steven W. Running,et al.  Comparisons of land cover and LAI estimates derived from ETM+ and MODIS for four sites in North America: a quality assessment of 2000/2001 provisional MODIS products , 2003 .

[330]  W. Cohen,et al.  Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation , 2003 .

[331]  Josep G. Canadell,et al.  Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion approach , 2003 .

[332]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[333]  Wolfgang Grabs,et al.  High‐resolution fields of global runoff combining observed river discharge and simulated water balances , 2002 .

[334]  S. Ollinger,et al.  Regional variation in foliar chemistry and n cycling among forests of diverse history and composition , 2002 .

[335]  Yiqi Luo,et al.  Transient ecosystem responses to free-air CO2 enrichment (FACE): experimental evidence and methods of analysis. , 2001, The New phytologist.

[336]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[337]  I. C. Prentice,et al.  Carbon balance of the terrestrial biosphere in the Twentieth Century: Analyses of CO2, climate and land use effects with four process‐based ecosystem models , 2001 .

[338]  R. Koster,et al.  Variance and Predictability of Precipitation at Seasonal-to-Interannual Timescales , 2000 .

[339]  E. Matthews Global litter production, pools, and turnover times: Estimates from measurement data and regression models , 1997 .

[340]  P. Vitousek,et al.  Mineral control of soil organic carbon storage and turnover , 1997, Nature.

[341]  R. Leuning A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants , 1995 .

[342]  Robert J. Scholes,et al.  Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide , 1993 .

[343]  D. Robinson,et al.  Global Snow Cover Monitoring: An Update , 1993 .

[344]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[345]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[346]  David S. Schimel,et al.  Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils , 1989 .

[347]  W. Parton,et al.  Dynamics of C, N, P and S in grassland soils: a model , 1988 .

[348]  W. Parton,et al.  Analysis of factors controlling soil organic matter levels in Great Plains grasslands , 1987 .

[349]  D. Jenkinson,et al.  Modelling the turnover of organic matter in long-term experiments at Rothamsted , 1987 .

[350]  W. Post,et al.  Global patterns of soil nitrogen storage , 1985, Nature.

[351]  Wilfred M. Post,et al.  Soil carbon pools and world life zones , 1982, Nature.

[352]  M. P.R.,et al.  A METHOD FOR SCALING VEGETATION DYNAMICS: THE ECOSYSTEM DEMOGRAPHY MODEL (ED) , 2022 .