A NEW DIRECT METHOD FOR MEASURING THE HUBBLE CONSTANT FROM REVERBERATING ACCRETION DISCS IN ACTIVE GALAXIES

ABSTRA C T We show how wavelength-dependent time delays between continuum flux variations of active galactic nuclei (AGNs) can be used to test the standard black hole-accretion disc paradigm, by measuring the temperature structure TORU of the gaseous material surrounding the purported black hole. Reprocessing of high-energy radiation in a steady-state blackbody accretion disc with T ~ R ˇ3=4 incurs a wavelength-dependent light travel time delay t ~ l 4=3 . The Interna- tional AGN Watch multiwavelength monitoring campaign on NGC 7469 showed optical continuum variations lagging behind those in the UV by about 1 d at 4800 Aand about 2 d at 7500 A ˚ . These UV/optical continuum lags imply a radial temperature structure T ~ R ˇ3=4 , consistent with the classical accretion disc model, and hence strongly support the existence of a disc in this system. We assume that the observed time delays are indeed caused by a classical accretion disc structure, and derive a redshift-independent luminosity distance to NGC 7469. The luminosity distance allows us to estimate a Hubble constant of H0Ocos i=0:7U 1=2 a 42 6 9 km s ˇ1 Mpc ˇ1 . The interpretation of the observed time delays and spectral energy distribution in the context of an accretion disc structure requires further validation. At the same time, efforts to minimize the systematic uncertainties in our method to derive a more accurate measurement of H0, e.g. by obtaining an independent accurate determination of the disc inclination i or statistical average of a moderate sample of active galaxies, are required. However, this remains a promising new method of determining redshift-independent distances to AGNs.

[1]  Bradley M. Peterson,et al.  Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XIV. Intensive Optical Spectrophotometric Observations of NGC 7469 , 1998 .

[2]  B. M. Peterson,et al.  New Constraints on the Continuum Emission Mechanism of Active Galactic Nuclei: Intensive Monitoring of NGC 7469 in the X-Ray and Ultraviolet , 1998, astro-ph/9804135.

[3]  Bradley M. Peterson,et al.  On Uncertainties in Cross‐Correlation Lags and the Reality of Wavelength‐dependent Continuum Lags in Active Galactic Nuclei , 1998, astro-ph/9802103.

[4]  Gerard A. Kriss,et al.  Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XI. Intensive Monitoring of the Ultraviolet Spectrum of NGC 7469 , 1997 .

[5]  V. Hubeny,et al.  Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei , 1997, astro-ph/0105507.

[6]  D. Long,et al.  A Robust Determination of the Time Delay in 0957+561A, B and a Measurement of the Global Value of Hubble's Constant , 1996, astro-ph/9610162.

[7]  M. Sincell,et al.  The Vertical Structure and Ultraviolet Spectrum of X-Ray-irradiated Accretion Disks in Active Galactic Nuclei , 1996, astro-ph/9609094.

[8]  K. Gebhardt,et al.  The Quadruple Gravitational Lens PG 1115+080: Time Delays and Models , 1996, astro-ph/9611051.

[9]  J. C. Lee,et al.  Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35 , 1996, astro-ph/9608192.

[10]  Gerard A. Kriss,et al.  Multiwavelength observations of short-timescale variability in NGC 4151 .4. Analysis of multiwavelength continuum variability , 1996 .

[11]  N. Tanvir,et al.  Determination of the Hubble constant from observations of Cepheid variables in the galaxy M96 , 1995, Nature.

[12]  H. Kunieda,et al.  Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG–6–30–15 , 1995, Nature.

[13]  Felix J. Lockman,et al.  The Hubble Space Telescope Quasar Absorption Line Key Project. 10: Galactic H I 21 centimeter emission toward 143 quasars and active Galactic nuclei , 1995 .

[14]  Naomasa Nakai,et al.  Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258 , 1995, Nature.

[15]  J. Hughes,et al.  A Measurement of the Hubble Constant from the X-ray Properties and the Sunyaev-zel'dovich Effect of Cl 0016+16 , 1997 .

[16]  Garth D. Illingworth,et al.  Distance to the Virgo cluster galaxy M100 from Hubble Space Telescope observations of Cepheids , 1994, Nature.

[17]  M. Longair,et al.  Frontiers of Space And Ground-Based Astronomy , 1994 .

[18]  G. Vaucouleurs The extragalactic distance scale. VIII: A comparison of distance scales , 1993 .

[19]  P. Barthel,et al.  Support for a unified model of radio galaxies and quasars from isotropic [O II] emission , 1993, Nature.

[20]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[21]  Sidney van den Bergh THE HUBBLE PARAMETER , 1992 .

[22]  Andrew C. Fabian,et al.  X-ray reflection from cold matter in Active Galactic Nuclei and X-ray binaries , 1991 .

[23]  A. R. Rivolo,et al.  A study of the Baldwin effect in the IUE data set , 1990 .

[24]  A. Edge,et al.  GINGA observations of Abell 2281: implications for H0 , 1990 .

[25]  K. Nandra,et al.  X-ray reflection from cold matter in the nuclei of active galaxies , 1990, Nature.

[26]  S. Faber,et al.  Spectroscopy and Photometry of Elliptical Galaxies. VI. Sample Selection and Data Summary: Erratum , 1989 .

[27]  John L. Tonry,et al.  A new technique for measuring extragalactic distances , 1988 .

[28]  David Burstein,et al.  Spectroscopy and photometry of elliptical galaxies. V - Galaxy streaming toward the new supergalactic center , 1988 .

[29]  M. Rowan-Robinson,et al.  The extragalactic distance scale , 1988 .

[30]  A. Filippenko,et al.  The stellar and nonstellar continua of Seyfert galaxies: nonthermal emission in the near-infrared , 1983 .

[31]  M. Malkan,et al.  The ultraviolet excess of Seyfert 1 galaxies and quasars. , 1982 .

[32]  Ya. B. Zel'Dovich,et al.  Microwave background radiation as a probe of the contemporary structure and history of the universe , 1980 .

[33]  G. Shields Thermal continuum from accretion disks in quasars , 1978, Nature.

[34]  J. Baldwin Luminosity Indicators in the Spectra of Quasi-Stellar Objects , 1977 .

[35]  H. Bondi,et al.  The Gravitational Lens Effect , 1964 .

[36]  K. N. Dollman,et al.  - 1 , 1743 .