P-stable linear symmetric multistep methods for periodic initial-value problems

In this paper we present a new kind of P-stable multistep methods for periodic initial-value problems. From the numerical results obtained by the new method to well-known periodic problems, show the superior efficiency, accuracy, stability of the method presented in this paper.

[1]  A. D. Raptis,et al.  A four-step phase-fitted method for the numerical integration of second order initial-value problems , 1991 .

[2]  E. Hairer Unconditionally stable methods for second order differential equations , 1979 .

[3]  Deyin Zhao,et al.  Importance of the first-order derivative formula in the Obrechkoff method , 2005, Comput. Phys. Commun..

[4]  Theodore E. Simos,et al.  On Finite Difference Methods for the Solution of the Schrödinger Equation , 1999, Comput. Chem..

[5]  R. Van Dooren Stabilization of Cowell's classical finite difference method for numerical integration , 1974 .

[6]  D. G. Bettis,et al.  Stabilization of Cowell's method , 1969 .

[7]  Zhongcheng Wang,et al.  A new effective algorithm for the resonant state of a Schrödinger equation , 2005, Comput. Phys. Commun..

[8]  T. E. Simos,et al.  A generator of high-order embedded P-stable methods for the numerical solution of the Schro¨dinger equation , 1996 .

[9]  Yongming Dai,et al.  A Twelfth-Order Four-Step Formula For The Numerical Integration Of The One-Dimensional Schrödinger Equation , 2003 .

[10]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[11]  Zhongcheng Wang,et al.  A new high efficient and high accurate Obrechkoff four-step method for the periodic nonlinear undamped Duffing's equation , 2005, Comput. Phys. Commun..

[12]  Deyin Zhao,et al.  A Mathematica program for the two-step twelfth-order method with multi-derivative for the numerical solution of a one-dimensional Schrödinger equation , 2004, Comput. Phys. Commun..

[13]  A. Messiah Quantum Mechanics , 1961 .

[14]  Ronald E. Mickens,et al.  An introduction to nonlinear oscillations , 1981 .

[15]  Tom E. Simos A P-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial-value problems , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[16]  U. Ananthakrishnaiah P-stable Obrechkoff methods with minimal phase-lag for periodic initial value problems , 1987 .

[17]  Theodore E. Simos,et al.  On Variable-step Methods for the Numerical Solution of Schrödinger Equation and Related Problems , 2001, Comput. Chem..

[18]  S. Tremaine,et al.  Symmetric Multistep Methods for the Numerical Integration of Planetary Orbits , 1990 .

[19]  T E Simos New P-stable high-order methods with minimal phase-lag for the numerical integration of the radial Schrödinger equation , 1997 .

[21]  Beny Neta,et al.  Obrechkoff versus super-implicit methods for the solution of first- and second-order initial value problems , 2003 .

[22]  T. E. Simos,et al.  Numerical integration of the one-dimensional Schro¨dinger equations , 1990 .

[23]  T. E. Simos,et al.  A P-Stable Eighth-Order Method for the Numerical Integration of Periodic Initial-Value Problems , 1997 .

[24]  Gerald D. Quinlan Resonances and instabilities in symmetric multistep methods , 1999 .

[25]  Yongming Dai,et al.  A four-step trigonometric fitted P-stable Obrechkoff method for periodic initial-value problems , 2006 .

[26]  Jeff Cash High orderP-stable formulae for the numerical integration of periodic initial value problems , 1981 .

[27]  A. C. Allison,et al.  The numerical solution of coupled differential equations arising from the Schrödinger equation , 1970 .

[28]  Georgios Psihoyios,et al.  Trigonometrically-fitted symmetric multistep methods for the approximate solution of orbital problems , 2003 .