Large‐Scale Plane‐Wave‐Based Density Functional Theory: Formalism, Parallelization, and Applications

[1]  Eric J. Bylaska,et al.  LDA Predictions of C20 Isomerizations: Neutral and Charged Species , 1996 .

[2]  John D. Joannopoulos,et al.  Dielectric matrix scheme for fast convergence in self-consistent electronic-structure calculations , 1982 .

[3]  Hamann Generalized norm-conserving pseudopotentials. , 1989, Physical review. B, Condensed matter.

[4]  E. Bylaska,et al.  Kinetic Evidence for Five-Coordination in AlOH(aq)2+ Ion , 2005, Science.

[5]  Marvin L. Cohen,et al.  Theory of ab initio pseudopotential calculations , 1982 .

[6]  S. Xantheas,et al.  Interaction potential of Al3+ in water from first principles calculations , 1997 .

[7]  John J. Hopfield,et al.  Chemically Motivated Pseudopotential for Sodium , 1973 .

[8]  Heine,et al.  Optimized and transferable nonlocal separable ab initio pseudopotentials. , 1993, Physical review. B, Condensed matter.

[9]  D. R. Hamann,et al.  Self-Consistent Pseudopotential for Si , 1973 .

[10]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[11]  J. C. Phillips,et al.  Energy-Band Interpolation Scheme Based on a Pseudopotential , 1958 .

[12]  Hannes Jónsson,et al.  A parallel implementation of the Car-Parrinello method by orbital decomposition , 1994 .

[13]  White,et al.  Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations. , 1994, Physical review. B, Condensed matter.

[14]  D. Remler,et al.  Molecular dynamics without effective potentials via the Car-Parrinello approach , 1990 .

[15]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[16]  I. Chou,et al.  Relaxation of the structure of simple metal ion complexes in aqueous solutions at up to supercritical conditions , 2003 .

[17]  Wang,et al.  Generalized gradient approximation for the exchange-correlation hole of a many-electron system. , 1996, Physical review. B, Condensed matter.

[18]  Gerard L. G. Sleijpen,et al.  Accelerated Inexact Newton Schemes for Large Systems of Nonlinear Equations , 1998, SIAM J. Sci. Comput..

[19]  Eric J. Bylaska,et al.  New development of self-interaction corrected DFT for extended systems applied to the calculation of native defects in 3C–SiC , 2006 .

[20]  David E. Bernholdt,et al.  High performance computational chemistry: An overview of NWChem a distributed parallel application , 2000 .

[21]  Lu J. Sham,et al.  General Theory of Pseudopotentials , 1962 .

[22]  P. Blöchl,et al.  Electrostatic decoupling of periodic images of plane‐wave‐expanded densities and derived atomic point charges , 1995 .

[23]  Alan Randall Tackett,et al.  Orthogonal polynomial projectors for the projector augmented wave method of electronic structure calculations , 1998 .

[24]  A. Zunger,et al.  The use of pseudopotentials within local-density formalism calculations for atoms: Some results for the first row , 1977 .

[25]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[26]  Eric J. Bylaska,et al.  Electron, hole and exciton self-trapping in germanium doped silica glass from DFT calculations with self-interaction correction , 2007 .

[27]  Baroni,et al.  Conjugate gradient minimization of the energy functional: A new method for electronic structure calculation. , 1989, Physical review. B, Condensed matter.

[28]  Robert J. Harrison,et al.  Krylov subspace accelerated inexact Newton method for linear and nonlinear equations , 2004, J. Comput. Chem..

[29]  F. Gygi,et al.  A first-principles molecular dynamics study of calcium in water. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  D. Vanderbilt,et al.  Optimally smooth norm-conserving pseudopotentials. , 1985, Physical review. B, Condensed matter.

[31]  Gregory A. Voth,et al.  Exact exchange in ab initio molecular dynamics: An efficient plane-wave based algorithm , 1998 .

[32]  Pier Luigi Silvestrelli,et al.  Maximally localized Wannier functions for simulations with supercells of general symmetry , 1999 .

[33]  William A. Goddard,et al.  Ab Initio Effective Potentials for Use in Molecular Calculations , 1972 .

[34]  K. Hermansson,et al.  Many-body potentials for aqueous Li(+), Na(+), Mg(2+), and Al(3+): comparison of effective three-body potentials and polarizable models. , 2004, The Journal of chemical physics.

[35]  R. A. James,et al.  The solution of Poisson''s equation for isolated source distributions , 1977 .

[36]  Görling Exact treatment of exchange in Kohn-Sham band-structure schemes. , 1996, Physical review. B, Condensed matter.

[37]  Blöchl,et al.  Generalized separable potentials for electronic-structure calculations. , 1990, Physical review. B, Condensed matter.

[38]  Baldereschi,et al.  Quasiparticle energies in semiconductors: Self-energy correction to the local-density approximation. , 1989, Physical review letters.

[39]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[40]  P. Pulay Improved SCF convergence acceleration , 1982 .

[41]  Johnson,et al.  Modified Broyden's method for accelerating convergence in self-consistent calculations. , 1988, Physical review. B, Condensed matter.

[42]  R. Caminiti,et al.  Hydration water–external water interactions around Cr3+ ions , 1978 .

[43]  L. Kleinman,et al.  Self-consistent calculations of the energy bands and bonding properties of B sub 12 C sub 3 , 1990 .

[44]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[45]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[46]  D. R. Hamann,et al.  Pseudopotentials that work: From H to Pu , 1982 .

[47]  Mark E. Tuckerman,et al.  A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters , 1999 .

[48]  J. Joannopoulos,et al.  Local pseudopotential theory for transition metals , 1977 .

[49]  Franz Franchetti,et al.  Large-scale electronic structure calculations of high-Z metals on the BlueGene/L platform , 2006, SC.

[50]  Marvin L. Cohen,et al.  Special Points in the Brillouin Zone , 1973 .

[51]  Warren E. Pickett,et al.  Pseudopotential methods in condensed matter applications , 1989 .

[52]  Rodney J. Bartlett,et al.  The reduced linear equation method in coupled cluster theory. , 1981 .

[53]  V. Heine,et al.  Structure of di- and trivalent metals. , 1966 .

[54]  A. Zunger,et al.  New approach for solving the density-functional self-consistent-field problem , 1982 .

[55]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[56]  Shirley,et al.  Extended norm-conserving pseudopotentials. , 1989, Physical review. B, Condensed matter.

[57]  John D. Joannopoulos,et al.  Implementation of the Car–Parrinello algorithm for ab initio total energy calculations on a massively parallel computer , 1993 .

[58]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[59]  M Leslie,et al.  The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method , 1985 .

[60]  Exponential transformation of molecular orbitals , 1994 .

[61]  A. Zunger,et al.  CORRIGENDUM: Momentum-space formalism for the total energy of solids , 1979 .

[62]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[63]  P. Salmon,et al.  Dynamics of water protons in concentrated gallium(3+), aluminum(3+), iron(3+) and dysprosium(3+) aqueous solutions: a study using incoherent quasi-elastic neutron scattering , 1991 .

[64]  Mike C. Payne,et al.  Large-scale ab initio total energy calculations on parallel computers , 1992 .

[65]  R. W. Godby,et al.  Supercell technique for total-energy calculations of finite charged and polar systems , 1997, cond-mat/9709234.

[66]  F. Gygi,et al.  A first principles molecular dynamics simulation of the hydrated magnesium ion , 2001 .

[67]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[68]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[69]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[70]  M. Schlüter,et al.  Relativistic norm-conserving pseudopotentials , 1982 .

[71]  Steven G. Louie,et al.  Total energies of diamond (111) surface reconstructions by a linear combination of atomic orbitals method , 1984 .

[72]  Lee,et al.  Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. , 1991, Physical review. B, Condensed matter.

[73]  Allan,et al.  Solution of Schrödinger's equation for large systems. , 1989, Physical review. B, Condensed matter.

[74]  Bernd G. Pfrommer,et al.  Unconstrained Energy Functionals for Electronic Structure Calculations , 1998 .

[75]  Hannes Jonsson,et al.  A hybrid decomposition parallel implementation of the Car-Parrinello method , 1995 .

[76]  Nelson,et al.  Plane-wave electronic-structure calculations on a parallel supercomputer. , 1993, Physical review. B, Condensed matter.

[77]  H. Ohtaki,et al.  Structure and dynamics of hydrated ions , 1993 .

[78]  S. Rice,et al.  On the Use of Pseudopotentials in the Quantum Theory of Atoms and Molecules , 2007 .

[79]  F. Gygi,et al.  The solvation of Na+ in water: First-principles simulations , 2000 .

[80]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[81]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[82]  R. Caminiti,et al.  Order phenomena in aqueous AlCl3 solutions , 1979 .

[83]  N. M. Edelstein,et al.  Investigation of Aquo and Chloro Complexes of UO(2)(2+), NpO(2)(+), Np(4+), and Pu(3+) by X-ray Absorption Fine Structure Spectroscopy. , 1997, Inorganic chemistry.

[84]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[85]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[86]  J. H. Weare,et al.  Ab initio molecular dynamics simulations of aluminum ion solvation in water clusters , 2000 .

[87]  F. Gygi,et al.  Dissociation of water under pressure. , 2001, Physical review letters.

[88]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[89]  Alex Zunger,et al.  First-principles nonlocal-pseudopotential approach in the density-functional formalism: Development and application to atoms , 1978 .

[90]  P. Ewald VII. Das „reziproke Gitter“ in der Strukturtheorie , 1921 .

[91]  M. Valiev,et al.  The Projector-Augmented Plane Wave Method Applied to Molecular Bonding , 1999 .

[92]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[93]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .

[94]  Richard A. Friesner,et al.  Efficient Fock matrix diagonalization by a Krylov‐space method , 1993 .

[95]  P. Salmon,et al.  An incoherent quasi-elastic neutron scattering study on the dynamics of aqueous Cr3+ perchlorate solutions , 1989 .

[96]  A. Zunger,et al.  A new method for diagonalising large matrices , 1985 .

[97]  Eric J. Bylaska,et al.  NWChem for Materials Science , 2003 .

[98]  G. Kerker,et al.  Non-singular atomic pseudopotentials for solid state applications , 1980 .

[99]  S. Louie,et al.  Self-consistent pseudopotential calculations for Si (111) surfaces: Unreconstructed (1×1) and reconstructed (2×1) model structures , 1975 .

[100]  Eric J. Bylaska,et al.  Parallel Implementation of the Projector Augmented Plane Wave Method for Charged Systems , 2002 .

[101]  J. Paier,et al.  Second-order Møller-Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set. , 2009, The Journal of chemical physics.

[102]  Eric J Bylaska,et al.  Equatorial and apical solvent shells of the UO2 2+ ion. , 2008, The Journal of chemical physics.

[103]  G. Kerker Efficient iteration scheme for self-consistent pseudopotential calculations , 1981 .

[104]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[105]  I. Chou,et al.  The Structure of Yb3+ Aquo Ion and Chloro Complexes in Aqueous Solutions at Up to 500 °C and 270 MPa , 2002 .

[106]  H. Monkhorst,et al.  "Special points for Brillouin-zone integrations"—a reply , 1977 .

[107]  G. E. Matthews,et al.  A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions , 2001 .

[108]  A. Barnes,et al.  The hydration of Dy3+ and Yb3+ in aqueous solution: A neutron scattering first order difference study , 1989 .

[109]  Kari Laasonen,et al.  Hydration of Li+ ion. An ab initio molecular dynamics simulation , 2001 .

[110]  Conyers Herring,et al.  A New Method for Calculating Wave Functions in Crystals , 1940 .

[111]  L. Kantorovich,et al.  Elimination of the long-range dipole interaction in calculations with periodic boundary conditions , 1999 .

[112]  M. L. Cohen,et al.  Ab initio pseudopotential theory , 1982 .

[113]  Barnett,et al.  Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2. , 1993, Physical review. B, Condensed matter.

[114]  S. Ansell,et al.  The Structural and Dynamic Properties of some Transition Metal Aqua Cations: Results from Neutron Scattering , 1995 .

[115]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .