Structure Tensor Estimation - Introducing Monomial Quadrature Filter Sets

’Abstract Description and estimation of local spatial structure has a long history and numerous analysis tools have been developed. A concept that is widely recognized as fundamental in the analysis is the structure tensor. It has, however, a fairly broad and unspecific meaning. This chapter is intended to provide a framework for displaying the differences and similarities of existing structure estimation approaches. A new method for structure tensor estimation, which is a generalization of many of it’s predecessors, is presented. The method uses pairs of filter sets having Fourier directional responses in the form of monomials, one odd order set and one even order set. It is shown that such filter sets allow for a particularly simple way of attaining phase invariant, positive semi-definite, local structure tensor estimates. In addition, we show that the chosen filter sets directly links order, scale and the gradient operator. We continue to compare a number of known structure tensor algorithms by formulating them in monomial filter set terms. In conclusion we show how higher order tensors can be estimated using a generalization of the same simple formulation.

[1]  Carl-Fredrik Westin,et al.  Representing Local Structure Using Tensors II , 2011, SCIA.

[2]  Baba C. Vemuri,et al.  Registration of High Angular Resolution Diffusion MRI Images Using 4 th Order Tensors , 2007, MICCAI.

[3]  Björn Svensson,et al.  Estimation of Non-Cartesian Local Structure Tensor Fields , 2007, SCIA.

[4]  Carl-Fredrik Westin,et al.  Prediction from off-grid samples using continuous normalized convolution , 2007, Signal Process..

[5]  Michael Felsberg,et al.  Energy Tensors: Quadratic, Phase Invariant Image Operators , 2005, DAGM-Symposium.

[6]  Klas Nordberg,et al.  Estimation of orientation tensors for simple signals by means of second-order filters , 2005, Signal Process. Image Commun..

[7]  Hans Knutsson,et al.  Implications of invariance and uncertainty for local structure analysis filter sets , 2005, Signal Process. Image Commun..

[8]  Michael Felsberg,et al.  Riesz-Transforms Versus Derivatives: On the Relationship Between the Boundary Tensor and the Energy Tensor , 2005, Scale-Space.

[9]  Michael Felsberg,et al.  GET: The Connection Between Monogenic Scale-Space and Gaussian Derivatives , 2005, Scale-Space.

[10]  U. Kothe,et al.  Integrated edge and junction detection with the boundary tensor , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[11]  Hans Knutsson,et al.  Loglets: Generalized Quadrature and Phase for Local Spatio-Temporal Structure Estimation , 2003, SCIA.

[12]  Hans Knutsson,et al.  Motion compensation using backward prediction and prediction refinement , 2003, Signal Process. Image Commun..

[13]  Hans Knutsson,et al.  Transformation of local spatio-temporal structure tensor fields , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[14]  Michael Felsberg,et al.  The monogenic signal , 2001, IEEE Trans. Signal Process..

[15]  Gunnar Farnebäck,et al.  Fast and Accurate Motion Estimation Using Orientation Tensors and Parametric Motion Models , 2000, ICPR.

[16]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[17]  Carl-Fredrik Westin,et al.  Estimation of motion vector fields using tensor field filtering , 1994, Proceedings of 1st International Conference on Image Processing.

[18]  Hans Knutsson,et al.  Robust N-dimensional orientation estimation using quadrature filters and tensor whitening , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[19]  David J. Fleet,et al.  Stability of phase information , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[20]  H. Barman,et al.  A Tensor Based Approach To Structure Analysis And Enhancement In 2D, 3D And 4D , 1991, Proceedings of the Seventh Workshop on Multidimensional Signal Processing.

[21]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[22]  Hans Knutsson,et al.  Estimation of Curvature in 3D Images Using Tensor Field Filtering , 1990, ECCV.

[23]  D. M. Kammen,et al.  Quadrature and the development of orientation selective cortical cells by Hebb rules , 1989, Biological Cybernetics.

[24]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[25]  Hans Knutsson,et al.  Uncertainty and inference in the visual system , 1988, IEEE Trans. Syst. Man Cybern..

[26]  Reiner Lenz,et al.  Rotation-invariant operators and scale-space filtering , 1987, Pattern Recognit. Lett..

[27]  Guido Gerig,et al.  Edge Detection , 1985 .

[28]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[29]  Hans Knutsson,et al.  Filtering and reconstruction in image processing , 1984 .

[30]  Daniel A. Pollen,et al.  Visual cortical neurons as localized spatial frequency filters , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[31]  R. Wilson,et al.  Anisotropic Nonstationary Image Estimation and Its Applications: Part I - Restoration of Noisy Images , 1983, IEEE Transactions on Communications.

[32]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[33]  Steven W. Zucker,et al.  A Three-Dimensional Edge Operator , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  A.V. Oppenheim,et al.  The importance of phase in signals , 1980, Proceedings of the IEEE.

[35]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[36]  G. Granlund In search of a general picture processing operator , 1978 .

[37]  D. Hubel,et al.  Sequence regularity and geometry of orientation columns in the monkey striate cortex , 1974, The Journal of comparative neurology.

[38]  Manfred H. Hueckel An Operator Which Locates Edges in Digitized Pictures , 1971, J. ACM.

[39]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[40]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[41]  A. Bhatia,et al.  On the circle polynomials of Zernike and related orthogonal sets , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.

[42]  F. Zernike Diffraction theory of the knife-edge test and its improved form, the phase-contrast method , 1934 .

[43]  Hans Knutsson,et al.  T-flash: Tensor Visualization in Medical Studio , 2009, Tensors in Image Processing and Computer Vision.

[44]  O. Ronneberger,et al.  Fourier Analysis in Polar and Spherical Coordinates , 2008 .

[45]  Hans Knutsson,et al.  P-averages of diffusion tensors , 2007 .

[46]  Juan Ruiz-Alzola,et al.  Tensor Field Regularization using Normalized Convolution and Markov Random Fields in a Bayesian Framework , 2006, Visualization and Processing of Tensor Fields.

[47]  Carl-Fredrik Westin,et al.  A tensor-like representation for averaging, filtering and interpolation of 3-D object orientation data , 2005, IEEE International Conference on Image Processing 2005.

[48]  K. Nordberg A fourth order tensor for representation of orientation and position of oriented segments , 2004 .

[49]  Gunnar Farnebäck,et al.  Polynomial expansion for orientation and motion estimation , 2002 .

[50]  Mats Andersson,et al.  A perception based velocity estimator and its use for motion compensated prediction , 2001 .

[51]  Hans Knutsson,et al.  Local Curvature from Gradients of the Orientation Tensor Field , 1995 .

[52]  Hans Knutsson,et al.  Depth and Velocity from Orientation Tensor Fields , 1993 .

[53]  Mats Andersson,et al.  Controllable 3-D Filters for Low Level Computer Vision , 1993 .

[54]  Hans Knutsson,et al.  Robust Orientation Estimation in 2D, 3D and 4D Using Tensors , 1992 .

[55]  Carl-Fredrik Westin,et al.  Extraction of Local Symmetries using Tensor Field Filtering , 1992 .

[56]  H. Knutsson,et al.  Orientation Estimation in Ambiguous Neighbourhoods , 1992 .

[57]  Hans Knutsson,et al.  Multiresolution Estimation of 2-D Disparity Using a Frequency Domain Approach , 1992, BMVC.

[58]  Hans Knutsson,et al.  On Phase Representation of Image Information , 1989 .

[59]  Gösta H. Granlund,et al.  Optical Flow Based on the Inertia Matrix of the Frequency Domain , 1988 .

[60]  Roland Wilson,et al.  A general multiresolution signal descriptor and its application to image analysis , 1988 .

[61]  J. Bigun,et al.  Optimal Orientation Detection of Linear Symmetry , 1987, ICCV 1987.

[62]  H. Knutsson A Tensor Representation of 3-D Structures , 1987 .

[63]  H. Knutsson Producing a Continuous and Distance Preserving 5-D Vector Representation of 3-D Orientation , 1985 .

[64]  Hans Knutsson,et al.  Texture Analysis Using Two-Dimensional Quadrature Filters , 1983 .

[65]  Hans Knutsson,et al.  Anisotropic Filtering Operations for Image Enhancement and their Relation to the Visual System , 1981 .

[66]  Hans Knutsson,et al.  Fourier Domain Design of Line and Edge Detectors , 1980 .

[67]  T. Claasen,et al.  THE WIGNER DISTRIBUTION - A TOOL FOR TIME-FREQUENCY SIGNAL ANALYSIS , 1980 .

[68]  James T. Tippett,et al.  OPTICAL AND ELECTRO-OPTICAL INFORMATION PROCESSING, , 1965 .

[69]  Dennis Gabor,et al.  Theory of communication , 1946 .