Quantum ring formation and antimony segregation in GaSb∕GaAs nanostructures

GaSb quantum rings in GaAs were studied by cross-sectional scanning tunneling microscopy. The quantum rings have an outer shape of a truncated pyramid with typical lateral extensions between 10 and 30nm and heights between 1 and 3nm, depending on the molecular beam epitaxy growth conditions. A clear central opening of varying diameter and more or less conical shape, filled with GaAs, is characteristic for the GaSb rings. The self-organized formation of quantum rings during the growth and subsequent fast overgrowth of GaSb quantum dots is attributed to a combination of large strain with strong Sb segregation. The latter is enabled by extensive group-V atomic exchange reactions at the GaSb∕GaAs interfaces, which are quantitatively evaluated from the atomically resolved microscopy data.

[1]  M. Hopkinson,et al.  Structure of InAs quantum dots-in-a-well nanostructures , 2008 .

[2]  Chien-Ping Lee,et al.  Evolution of self-assembled InAs quantum ring formation , 2007 .

[3]  J. Millunchick,et al.  Elastically induced coexistence of surface reconstructions , 2007 .

[4]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[5]  H. Eisele,et al.  Structural investigation of hierarchically self‐assembled GaAs/AlGaAs quantum dots , 2006 .

[6]  H. Eisele,et al.  Onset of GaSb/GaAs quantum dot formation , 2006 .

[7]  Diana L. Huffaker,et al.  III/V ratio based selectivity between strained Stranski-Krastanov and strain-free GaSb quantum dots on GaAs , 2006 .

[8]  K. Kern,et al.  Interplay between thermodynamics and kinetics in the capping of InAs/GaAs(001) quantum dots. , 2006, Physical review letters.

[9]  H. Eisele,et al.  Structure of InAs/GaAs quantum dots grown with Sb surfactant , 2006 .

[10]  V. Chamard,et al.  Investigation of shape, strain, and interdiffusion in InGaAs quantum rings using grazing incidence x-ray diffraction , 2006 .

[11]  V. Shchukin,et al.  Evolution of a multimodal distribution of self-organized InAs/GaAs quantum dots , 2005 .

[12]  R. Zimmermann,et al.  Optical exciton Aharonov-Bohm effect, persistent current, and magnetization in semiconductor nanorings of type I and II , 2005, cond-mat/0511324.

[13]  P. Offermans,et al.  Atomic-scale structure of self-assembled In(Ga)As quantum rings in GaAs , 2005 .

[14]  K. Pierz,et al.  Formation of InAs wetting layers studied by cross-sectional scanning tunneling microscopy , 2005 .

[15]  Y. H. Chang,et al.  Raman study of Si-Ge intermixing in Ge quantum rings and dots , 2005 .

[16]  M. Sopanen,et al.  Transformation of self-assembled InAs/InP quantum dots into quantum rings without capping. , 2005, Nano letters.

[17]  M. Righi,et al.  First-principles study of Sb-stabilized GaSb(001) surface reconstructions , 2005 .

[18]  H. Eisele,et al.  Formation and atomic structure of GaSb nanostructures in GaAs studied by cross-sectional scanning tunneling microscopy , 2005 .

[19]  Dieter Bimberg,et al.  Structure and intermixing of GaSb∕GaAs quantum dots , 2004 .

[20]  H. Eisele,et al.  Nanovoids in InGaAs∕GaAs quantum dots observed by cross-sectional scanning tunneling microscopy , 2004 .

[21]  Chien-Ping Lee,et al.  III–V Semiconductor nano-rings , 2004 .

[22]  M. Kuzmin,et al.  Electronic and structural analysis of Sb-induced GaAs(100)(2x4) and (2x8) surfaces , 2004 .

[23]  K. Yamaguchi,et al.  Control of GaSb/GaAs Quantum Nanostructures by Molecular Beam Epitaxy , 2004 .

[24]  H. Sakaki,et al.  Self-Assembled Growth of GaSb Type II Quantum Ring Structures , 2004 .

[25]  Isabelle Berbezier,et al.  Sb-surfactant-mediated growth of Si and Ge nanostructures , 2004 .

[26]  F. Koyama,et al.  Surfactant Effect of Sb on GaInAs Quantum Dots Grown by Molecular Beam Epitaxy , 2004 .

[27]  P. Werner,et al.  Ripening of self-organized InAs quantum dots , 2004 .

[28]  F. Xue,et al.  Self-assembled SiGe quantum rings grown on Si(001) by molecular beam epitaxy , 2003 .

[29]  H. Eisele,et al.  Segregation effects during GaAs overgrowth of InAs and InGaAs quantum dots studied by cross-sectional scanning tunneling microscopy , 2003 .

[30]  K. Kavanagh,et al.  Antimony segregation in GaAs-based multiple quantum well structures , 2003 .

[31]  Dieter Bimberg,et al.  450 meV hole localization in GaSb/GaAs quantum dots , 2003 .

[32]  Daniel Granados,et al.  In(Ga)As self-assembled quantum ring formation by molecular beam epitaxy , 2003 .

[33]  D. Ritchie,et al.  Room temperature 1.3 μm emission from self-assembled GaSb/GaAs quantum dots , 2003 .

[34]  H. Eisele,et al.  Reversed truncated cone composition distribution of In0.8Ga0.2As quantum dots overgrown by an In0.1Ga0.9As layer in a GaAs matrix , 2002 .

[35]  G. Bahir,et al.  Formation of InAs self-assembled quantum rings on InP , 2002, cond-mat/0210631.

[36]  Pm Paul Koenraad,et al.  Determination of the shape and indium distribution of low-growth-rate InAs quantum dots by cross-sectional scanning tunneling microscopy , 2002 .

[37]  T. Brown,et al.  Anion exchange at the interfaces of mixed anion III-V heterostructures grown by molecular beam epitaxy , 2002 .

[38]  Motlan,et al.  Growth optimization of GaSb/GaAs self-assembled quantum dots grown by MOCVD , 2002 .

[39]  Brian R. Bennett,et al.  Effects of As2 versus As4 on InAs/GaSb heterostructures: As-for-Sb exchange and film stability , 2001 .

[40]  Dieter Bimberg,et al.  Temporal evolution of GaSb/GaAs quantum dot formation , 2001 .

[41]  J. P. Silveira,et al.  Surface stress effects during MBE growth of III–V semiconductor nanostructures , 2001 .

[42]  Harper,et al.  Origin of antimony segregation in GaInSb/InAs strained-layer superlattices , 2000, Physical review letters.

[43]  Legrand,et al.  Imaging the wave-function amplitudes in cleaved semiconductor quantum boxes , 2000, Physical review letters.

[44]  K. Karrai,et al.  Optical emission from a charge-tunable quantum ring , 2000, Nature.

[45]  R. J. Luyken,et al.  Spectroscopy of nanoscopic semiconductor rings. , 1999, Physical review letters.

[46]  H. Eisele,et al.  Atomic structure of stacked InAs quantum dots grown by metal-organic chemical vapor deposition , 1999 .

[47]  Qianghua Xie,et al.  Arsenic for antimony exchange on GaSb, its impacts on surface morphology, and interface structure , 1999 .

[48]  Y. Arakawa,et al.  Structural and optical properties of type II GaSb/GaAs self-assembled quantum dots grown by molecular beam epitaxy , 1999 .

[49]  H. Eisele,et al.  Cross-sectional STM study of InAs quantum dots for laser devices , 1999 .

[50]  A. Forchel,et al.  Growth of self-organized GaSb islands on a GaAs surface by molecular beam epitaxy , 1999 .

[51]  H. Ren,et al.  In0.5Ga0.5As quantum dot intermixing and evaporation in GaAs capping layer growth , 1998 .

[52]  B. Streetman,et al.  Determination of 2D Pair Correlations and Pair Interaction Energies of In Atoms in Molecular Beam Epitaxially Grown InGaAs Alloys , 1997 .

[53]  Axel Lorke,et al.  Intermixing and shape changes during the formation of InAs self-assembled quantum dots , 1997 .

[54]  G. Solomon,et al.  Atom-resolved scanning tunneling microscopy of vertically ordered InAs quantum dots , 1997 .

[55]  V. Narayanamurti,et al.  Local conduction band offset of GaSb self-assembled quantum dots on GaAs , 1997 .

[56]  Esser,et al.  Atomic Structure of the Sb-Stabilized GaAs(100)-(2 x 4) Surface. , 1996, Physical review letters.

[57]  Brian R. Bennett,et al.  Evolution of GaSb epitaxy on GaAs(001)‐c(4×4) , 1996 .

[58]  John E. Bowers,et al.  Optical investigations of the dynamic behavior of GaSb/GaAs quantum dots , 1996 .

[59]  Brian R. Bennett,et al.  MOLECULAR BEAM EPITAXIAL GROWTH OF INSB, GASB, AND ALSB NANOMETER-SCALE DOTS ON GAAS , 1996 .

[60]  N. Ledentsov,et al.  RADIATIVE RECOMBINATION IN TYPE-II GASB/GAAS QUANTUM DOTS , 1995 .

[61]  M. W. Wang,et al.  Study of interface asymmetry in InAs–GaSb heterojunctions , 1995 .

[62]  Tsang,et al.  Surfactant-mediated growth of Ge on Si(111). , 1994, Physical review. B, Condensed matter.

[63]  Wang,et al.  Interface roughness and asymmetry in InAs/GaSb superlattices studied by scanning tunneling microscopy. , 1994, Physical review letters.

[64]  D. A. Collins,et al.  X‐ray photoelectron spectroscopy investigation of the mixed anion GaSb/InAs heterointerface , 1993 .

[65]  Stroscio,et al.  Atom-selective imaging of the GaAs(110) surface. , 1987, Physical review letters.

[66]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .