A Lex-BFS-based recognition algorithm for Robinsonian matrices

Robinsonian matrices arise in the classical seriation problem and play an important role in many applications where unsorted similarity or dissimilarity information must be reordered. We present a new polynomial time algorithm to recognize Robinsonian matrices based on a new characterization of Robinsonian matrices in terms of straight enumerations of unit interval graphs. The algorithm is simple and is based essentially on lexicographic breadth-first search Lex-BFS, using a divide-and-conquer strategy. When applied to a nonnegative symmetric $$n\times n$$ matrix with $$m$$ nonzero entries and given as a weighted adjacency list, it runs in $$Odn+m$$ time, where $$d$$ is the depth of the recursion tree, which is at most the number of distinct nonzero entries of $$A$$.

[1]  Derek G. Corneil,et al.  A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs , 2004, Discret. Appl. Math..

[2]  Monique Laurent,et al.  The quadratic assignment problem is easy for Robinsonian matrices with Toeplitz structure , 2014, Oper. Res. Lett..

[3]  F. Roberts Graph Theory and Its Applications to Problems of Society , 1987 .

[4]  Morgan Seston Dissimilarités de Robinson : algorithmes de reconnaissance et d'approximation , 2008 .

[5]  Alexandre d'Aspremont,et al.  Convex Relaxations for Permutation Problems , 2013, SIAM J. Matrix Anal. Appl..

[6]  Pavol Hell,et al.  Certifying LexBFS Recognition Algorithms for Proper Interval Graphs and Proper Interval Bigraphs , 2005, SIAM J. Discret. Math..

[7]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[8]  Johanne Cohen,et al.  Optimal Linear Arrangement of Interval Graphs , 2006, MFCS.

[9]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[10]  Innar Liiv,et al.  Seriation and matrix reordering methods: An historical overview , 2010, Stat. Anal. Data Min..

[11]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[12]  Raphaël Clifford,et al.  ACM-SIAM Symposium on Discrete Algorithms , 2015, SODA 2015.

[13]  Matteo Seminaroti Combinatorial algorithms for the seriation problem , 2016 .

[14]  Bruce Hendrickson,et al.  A Spectral Algorithm for Seriation and the Consecutive Ones Problem , 1999, SIAM J. Comput..

[15]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[16]  F. Roberts On the compatibility between a graph and a simple order , 1971 .

[17]  Michael Dom,et al.  Algorithimic Aspects of the Consecutive-Ones Property , 2009, Bull. EATCS.

[18]  Stephan Olariu,et al.  The ultimate interval graph recognition algorithm? , 1998, SODA '98.

[19]  Celina M. H. de Figueiredo,et al.  A Linear-Time Algorithm for Proper Interval Graph Recognition , 1995, Inf. Process. Lett..

[20]  Monique Laurent,et al.  A Lex-BFS-based recognition algorithm for Robinsonian matrices , 2017, Discret. Appl. Math..

[21]  C. Pandu Rangan,et al.  On Finding the Minimum Bandwidth of Interval Graphs , 1991, Inf. Comput..

[22]  Rolf Niedermeier,et al.  SIMPLE MAX-CUT for unit interval graphs and graphs with few P4s , 1999, Electron. Notes Discret. Math..

[23]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[24]  Stephan Olariu,et al.  An Optimal Greedy Heuristic to Color Interval Graphs , 1991, Inf. Process. Lett..

[25]  S. Olariu,et al.  Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.

[26]  Feodor F. Dragan,et al.  LexBFS-orderings and powers of chordal graphs , 1997, Discret. Math..

[27]  Robert E. Tarjan,et al.  Algorithmic aspects of vertex elimination , 1975, STOC.

[28]  Dominique Fortin,et al.  An Optimal Algorithm To Recognize Robinsonian Dissimilarities , 2014, Journal of Classification.

[29]  Xiaotie Deng,et al.  Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs , 1996, SIAM J. Comput..

[30]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[31]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..

[32]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[33]  W. S. Robinson A Method for Chronologically Ordering Archaeological Deposits , 1951, American Antiquity.

[34]  Victor Chepoi,et al.  Recognition of Robinsonian dissimilarities , 1997 .

[35]  Louis Ibarra,et al.  Recognizing and representing proper interval graphs in parallel using merging and sorting , 2007, Discret. Appl. Math..

[36]  Roded Sharan,et al.  A Fully Dynamic Algorithm for Recognizing and Representing Proper Interval Graphs , 1999, SIAM J. Comput..

[37]  Klaus Simon A New Simple Linear Algorithm to Recognize Interval Graphs , 1991, Workshop on Computational Geometry.

[38]  Sergey N. Rodin,et al.  Graphs and Genes , 1984 .

[39]  Victor Chepoi,et al.  Seriation in the Presence of Errors: A Factor 16 Approximation Algorithm for l∞-Fitting Robinson Structures to Distances , 2011, Algorithmica.