Chiral binaphthyl receptors bearing imidazolium or urea groups for the recognition of anions

[1]  Kui Luo,et al.  Enantioselective recognitions of chiral molecular tweezers containing imidazoliums for amino acids. , 2009, Chirality.

[2]  Juyoung Yoon,et al.  Chemosensors for pyrophosphate. , 2009, Accounts of chemical research.

[3]  Changwei Hu,et al.  Imidazolium-functionalized BINOL as a multifunctional receptor for chromogenic and chiral anion recognition. , 2009, Organic letters.

[4]  Min Ki Choi,et al.  Chiral anion recognition by color change utilizing thiourea, azophenol, and glucopyranosyl groups , 2008 .

[5]  K. Ahn,et al.  A rational approach to fluorescence "turn-on" sensing of alpha-amino-carboxylates. , 2008, Journal of the American Chemical Society.

[6]  J. Sessler,et al.  Strapped and other topographically nonplanar calixpyrrole analogues. Improved anion receptors. , 2008, Chemical communications.

[7]  Han Na Lee,et al.  Anthracene derivatives bearing thiourea and glucopyranosyl groups for the highly selective chiral recognition of amino acids: opposite chiral selectivities from similar binding units. , 2008, The Journal of organic chemistry.

[8]  Han Na Lee,et al.  Recent Development of Anion Selective Fluorescent Chemosensors , 2007 .

[9]  Juyoung Yoon,et al.  A highly selective fluorescent chemosensor for dihydrogen phosphate via unique excimer formation and PET mechanism , 2007 .

[10]  J. Sessler,et al.  A binol-strapped calix[4]pyrrole as a model chirogenic receptor for the enantioselective recognition of carboxylate anions. , 2007, Angewandte Chemie.

[11]  J. Hayes,et al.  A combined computational and experimental approach for the analysis of the enantioselective potential of a new macrocyclic receptor for N-protected alpha-amino acids. , 2007, Chemistry.

[12]  T. Gunnlaugsson,et al.  Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors , 2006 .

[13]  Michinori Karikomi,et al.  Chiral sensing for amino acid derivative based on a [2]rotaxane composed of an asymmetric rotor and an asymmetric axle. , 2006, Chemical communications.

[14]  Kwang Soo Kim,et al.  Fluorescent imidazolium receptors for the recognition of pyrophosphate , 2006 .

[15]  Philip A. Gale,et al.  Structural and molecular recognition studies with acyclic anion receptors. , 2006, Accounts of chemical research.

[16]  F. Schmidtchen,et al.  Judging on host-guest binding mode uniqueness: association entropy as an indicator in enantioselection. , 2006, Organic letters.

[17]  Juyoung Yoon,et al.  Imidazolium receptors for the recognition of anions. , 2006, Chemical Society reviews.

[18]  R. Crabtree,et al.  Axially Chiral Bidentate N-Heterocyclic Carbene Ligands Derived from BINAM: Rhodium and Iridium Complexes in Asymmetric Ketone Hydrosilylation , 2005 .

[19]  L. Pu,et al.  A cyclohexyl-1,2-diamine-derived bis(binaphthyl) macrocycle: enhanced sensitivity and enantioselectivity in the fluorescent recognition of mandelic acid. , 2005, Angewandte Chemie.

[20]  Jianzhang Zhao,et al.  An enantioselective fluorescent sensor for sugar acids. , 2004, Journal of the American Chemical Society.

[21]  Juyoung Yoon,et al.  A new imidazolium cavitand for the recognition of dicarboxylates. , 2004, Organic letters.

[22]  Kwang Soo Kim,et al.  Fluorescent GTP-sensing in aqueous solution of physiological pH. , 2004, Journal of the American Chemical Society.

[23]  Lin Pu,et al.  Fluorescence of organic molecules in chiral recognition. , 2004, Chemical reviews.

[24]  Félix Sancenón,et al.  Fluorogenic and chromogenic chemosensors and reagents for anions. , 2003, Chemical reviews.

[25]  Kwang Soo Kim,et al.  New fluorescent photoinduced electron transfer chemosensor for the recognition of H2PO4-. , 2003, Organic letters.

[26]  K. Kano,et al.  General Mechanism for Chiral Recognition by Native and Modified Cyclodextrins , 2002 .

[27]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .