RGB-Guided Hyperspectral Image Upsampling

Hyperspectral imaging usually lack of spatial resolution due to limitations of hardware design of imaging sensors. On the contrary, latest imaging sensors capture a RGB image with resolution of multiple times larger than a hyperspectral image. In this paper, we present an algorithm to enhance and upsample the resolution of hyperspectral images. Our algorithm consists of two stages: spatial upsampling stage and spectrum substitution stage. The spatial upsampling stage is guided by a high resolution RGB image of the same scene, and the spectrum substitution stage utilizes sparse coding to locally refine the upsampled hyperspectral image through dictionary substitution. Experiments show that our algorithm is highly effective and has outperformed state-of-the-art matrix factorization based approaches.

[1]  W. J. Carper,et al.  The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data , 1990 .

[2]  Xavier Otazu,et al.  Multiresolution-based image fusion with additive wavelet decomposition , 1999, IEEE Trans. Geosci. Remote. Sens..

[3]  D. Yeung,et al.  Super-resolution through neighbor embedding , 2004, CVPR 2004.

[4]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[5]  Jocelyn Chanussot,et al.  Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data-Fusion Contest , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Dani Lischinski,et al.  Joint bilateral upsampling , 2007, SIGGRAPH 2007.

[7]  Bruno Aiazzi,et al.  Improving Component Substitution Pansharpening Through Multivariate Regression of MS $+$Pan Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Paul Geladi,et al.  Techniques and applications of hyperspectral image analysis , 2007 .

[9]  Roger L. King,et al.  An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach and Contourlets , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[11]  Shree K. Nayar,et al.  Generalized Assorted Pixel Camera: Postcapture Control of Resolution, Dynamic Range, and Spectrum , 2010, IEEE Transactions on Image Processing.

[12]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[13]  Jian Sun,et al.  Guided Image Filtering , 2010, ECCV.

[14]  Naoto Yokoya,et al.  Coupled non-negative matrix factorization (CNMF) for hyperspectral and multispectral data fusion: Application to pasture classification , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[15]  Yasuyuki Matsushita,et al.  High-resolution hyperspectral imaging via matrix factorization , 2011, CVPR 2011.

[16]  Michael S. Brown,et al.  Visual enhancement of old documents with hyperspectral imaging , 2011, Pattern Recognit..

[17]  Quan Pan,et al.  Hyperspectral imagery super-resolution by sparse representation and spectral regularization , 2011, EURASIP J. Adv. Signal Process..

[18]  Ayan Chakrabarti,et al.  Statistics of real-world hyperspectral images , 2011, CVPR 2011.

[19]  C. Micchelli,et al.  Proximity algorithms for image models: denoising , 2011 .

[20]  Shih-Fu Chang,et al.  Segmentation using superpixels: A bipartite graph partitioning approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  J. Engels,et al.  Pansharpening of Hyperspectral Images in Urban Areas , 2012 .

[22]  Thomas S. Huang,et al.  Coupled Dictionary Training for Image Super-Resolution , 2012, IEEE Transactions on Image Processing.

[23]  Chih-Yuan Yang,et al.  Fast Direct Super-Resolution by Simple Functions , 2013, 2013 IEEE International Conference on Computer Vision.

[24]  Yi Ma,et al.  A non-negative sparse promoting algorithm for high resolution hyperspectral imaging , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[25]  Ajmal S. Mian,et al.  Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution , 2014, ECCV.

[26]  Paul D. Gader,et al.  Superpixel Estimation for Hyperspectral Imagery , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[27]  Michael S. Brown,et al.  Training-Based Spectral Reconstruction from a Single RGB Image , 2014, ECCV.

[28]  Zongben Xu,et al.  Spatial and Spectral Image Fusion Using Sparse Matrix Factorization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Sun Hao,et al.  Hyperspectral Image Classification Using Discriminative Dictionary Learning , 2014 .