Polycrystalline γ‐γ′‐δ Ternary Eutectic Ni‐Base Superalloys

[1]  M. Hardy,et al.  Microstructural characterisation and constitutive behaviour of alloy RR1000 under fatigue and creep–fatigue loading conditions , 2009 .

[2]  Yuefeng Gu,et al.  Creep behavior of new kinds of Ni–Co-base superalloys , 2009 .

[3]  H. Fraser,et al.  Coarsening kinetics of γ′ precipitates in the commercial nickel base Superalloy René 88 DT , 2009 .

[4]  H. Harada,et al.  A new phase-field method for simulating γ′ precipitation in multicomponent nickel-base superalloys , 2009 .

[5]  Zushu Hu,et al.  Topologically close-packed phase precipitation in a nickel-base superalloy during thermal exposure , 2007 .

[6]  R. Reed The Superalloys: Fundamentals and Applications , 2006 .

[7]  Ji-Cheng Zhao Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships , 2006 .

[8]  T. Pollock,et al.  Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties , 2006 .

[9]  Yuefeng Gu,et al.  Microstructure and yield strength of UDIMET 720LI alloyed with Co-16.9 Wt Pct Ti , 2005 .

[10]  M. Mills,et al.  Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy René 88 DT , 2005 .

[11]  H. Burlet,et al.  Effect of the microstructure on the creep behavior of PM Udimet 720 superalloy—experiments and modeling , 2004 .

[12]  E. Barbero,et al.  Thermodynamic assessment of liquid composition change during solidification and its effect on freckle formation in superalloys , 2004 .

[13]  S. Semiatin,et al.  Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material , 2004 .

[14]  Xishan Xie,et al.  Microstructural stability and mechanical properties of a new nickel-based superalloy , 2003 .

[15]  R. M. Ward,et al.  Tree-ring formation during vacuum arc remelting of INCONEL 718: Part I. Experimental investigation , 2002 .

[16]  K. Hagihara,et al.  Operative slip systems and anomalous strengthening in Ni3Nb single crystals with the D0a structure , 2001 .

[17]  K. Hagihara,et al.  Cyclic deformation behavior of Ni3Nb single crystals deforming by slip on (010)[100] , 2001 .

[18]  K. Hagihara,et al.  Plastic deformation behaviour and operative slip systems in Ni3Nb single crystals , 2000 .

[19]  M. P. Jackson,et al.  Quantification of the minor precipitates in UDIMET™ alloy720(LI) using electrolytic extraction and X-ray diffraction 1 UDIMET™ is a registered trade mark of Special Metal Corporation. 1 , 1998 .

[20]  A. H. Nahm,et al.  Rene 220: 100F Improvement Over Alloy 718 , 1989 .

[21]  M. Farag,et al.  Effect of growth conditions on the structure of directionally solidified γlγ’δ eutectic , 1979 .

[22]  R. Hertzberg,et al.  Fatigue crack propagation behaviour of unidirectionally solidified γ/γ′-δ eutectic alloys , 1979 .

[23]  M. Metzger,et al.  Deformation substructure and slip systems in directionally solidified Ni3Al(γ’)-Ni3Nb(δ) , 1978 .

[24]  J. Stringer,et al.  High-temperature oxidation of directionally solidified Ni-Cr-Nb-AI (γ/γ′-δ) eutectic alloys , 1978 .

[25]  N. Stoloff,et al.  Effects of composition and microstructure on fatigue of γ/γ′-δ type eutectic alloys , 1978 .

[26]  R. Hertzberg,et al.  Solubility limits and precipitation phenomena in NiNi3Nb aligned eutectic , 1976 .

[27]  Y. Nakagawa,et al.  The nature of the interface between two ordered lattices—the Ni3AlNi3Nb eutectic , 1972 .