Modeling in Cardiopulmonary Resuscitation: Pumping the Heart

[1]  E. B. Reeve,et al.  Physical bases of circulatory transport : regulation and exchange , 1967 .

[2]  Abraham Noordergraaf,et al.  Thoracic CT-scans and cardiovascular models: the eeffect of external force in CPR. , 2005 .

[3]  A Noordergraaf,et al.  The left ventricular ejection effect. , 2000, Studies in health technology and informatics.

[4]  Johnny T. Ottesen,et al.  Mathematical Modelling in Medicine , 2000 .

[5]  J. Ornato,et al.  The effect of applied chest compression force on systemic arterial pressure and end-tidal carbon dioxide concentration during CPR in human beings. , 1989, Annals of emergency medicine.

[6]  R. Beyar,et al.  Intrathoracic and abdominal pressure variations as an efficient method for cardiopulmonary resuscitation: studies in dogs compared with computer model results. , 1985, Cardiovascular research.

[7]  Charles F Babbs,et al.  Interposed abdominal compression CPR: a comprehensive evidence based review. , 2003, Resuscitation.

[8]  L. Geddes,et al.  Theoretical advantages of abdominal counterpulsation in CPR as demonstrated in a simple electrical model of the circulation. , 1984, Annals of emergency medicine.

[9]  Gerhart Liebau,et al.  Über ein ventilloses Pumpprinzip , 2004, Naturwissenschaften.

[10]  W. Harvey Classic pages in obstetrics and gynecology. Exercitatio anatomica de motu cordis et sanguinis in animalibus. , 1929, American journal of obstetrics and gynecology.

[11]  A Noordergraaf,et al.  Human circulatory system model based on Frank's mechanism. , 2000, Studies in health technology and informatics.

[12]  L. Adler,et al.  Hemodynamic effects of closed and open chest cardiac resuscitation in normal dogs and those with acute myocardial infarction. , 1962, The American journal of cardiology.

[13]  Stephen Wolfram,et al.  The Mathematica book, 5th Edition , 2003 .

[14]  J. Criley,et al.  Self-administered cardiopulmonary resuscitation by cough-induced cardiac compression. , 1976, Transactions of the American Clinical and Climatological Association.

[15]  D. Glower,et al.  The influence of manual chest compression rate on hemodynamic support during cardiac arrest: high-impulse cardiopulmonary resuscitation. , 1986, Circulation.

[16]  Wanchun Tang,et al.  Evolution of the stone heart after prolonged cardiac arrest. , 2002, Chest.

[17]  Cardiopulmonary Resuscitation by Intrathoracic Pressure Variations — In Vivo Studies and Computer Simulation , 1984, Angiology.

[18]  W. B. Kouwenhoven,et al.  Closed-chest cardiac massage. , 1960, JAMA.

[19]  E. Attinger,et al.  SIMULATION OF THE CARDIOVASCULAR SYSTEM * , 1966 .

[20]  J. Berg,et al.  An electrical analogue of the entire human circulatory system , 1964, Medical electronics and biological engineering.

[21]  M. Weil,et al.  Echocardiographic observations during cardiopulmonary resuscitation: A preliminary report , 1985, Critical care medicine.

[22]  E. Weber,et al.  Ueber die Anwendung der Wellenlehre auf die Lehre vom Kreislaufe des Blutes und insbesondere auf die Pulslehre , 1889 .

[23]  A Noordergraaf,et al.  Analog studies of the human systemic arterial tree. , 1969, Journal of biomechanics.

[24]  Rafael Beyar,et al.  Intrathoracic pressure fluctuations move blood during CPR: Comparison of hemodynamic data with predictions from a mathematical model , 2006, Annals of Biomedical Engineering.

[25]  S. Meador,et al.  Theoretical effects of fluid infusions during cardiopulmonary resuscitation as demonstrated in a computer model of the circulation. , 1987, Resuscitation.