All‐Graphene Core‐Sheath Microfibers for All‐Solid‐State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles

Flexible graphene fi ber (GF) stands for a new type of fi ber of practical importance, which integrates such unique properties as high strength, electrical and thermal conductivities of individual graphene sheets into the useful, macroscopic ensembles. GFs possess the common characteristics of fi bers like the mechanical fl exibility for textiles, while maintaining the uniqueness such as low cost, light weight, and ease of functionalization in comparison with conventional carbon fi bers. [ 1–3 ] Due to the extraordinary challenge to assemble two-dimensional (2D) microcosmic graphene sheets with irregular size and shape into macroscopic fi brillar confi guration, however, the success in fabrication of neat graphene fi bers only comes true recently. [ 1–4 ]

[1]  G. Shi,et al.  A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. , 2013, Chemical communications.

[2]  Xin Cai,et al.  Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage , 2012, Advanced materials.

[3]  Carter S. Haines,et al.  Oriented Graphene Nanoribbon Yarn and Sheet from Aligned Multi‐Walled Carbon Nanotube Sheets , 2012, Advanced materials.

[4]  Lan Jiang,et al.  Graphene microtubings: controlled fabrication and site-specific functionalization. , 2012, Nano letters.

[5]  Andreas Winter,et al.  Three‐Dimensional Nitrogen and Boron Co‐doped Graphene for High‐Performance All‐Solid‐State Supercapacitors , 2012, Advanced materials.

[6]  Ping Wang,et al.  Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers , 2012, Scientific Reports.

[7]  Xiaodong Li,et al.  Towards Textile Energy Storage from Cotton T‐Shirts , 2012, Advanced materials.

[8]  Lan Jiang,et al.  Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers , 2012, Advanced materials.

[9]  Yiqing Sun,et al.  Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering , 2012, Scientific Reports.

[10]  Liangti Qu,et al.  Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. , 2012, Journal of the American Chemical Society.

[11]  Shing‐Jong Huang,et al.  Supplementary Information for , 2013 .

[12]  Gengchao Wang,et al.  Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application , 2011 .

[13]  Xing Xie,et al.  Paper supercapacitors by a solvent-free drawing method† , 2011 .

[14]  Minbaek Lee,et al.  Single‐Fiber‐Based Hybridization of Energy Converters and Storage Units Using Graphene as Electrodes , 2011, Advanced materials.

[15]  Li Zhang,et al.  Preparation of Highly Conductive Graphene Hydrogels for Fabricating Supercapacitors with High Rate Capability , 2011 .

[16]  Seung Hwan Ko,et al.  Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles , 2011, Advanced materials.

[17]  Dan Li,et al.  Direct electro-deposition of graphene from aqueous suspensions. , 2011, Physical chemistry chemical physics : PCCP.

[18]  A. J. Frank,et al.  Ni-NiO core-shell inverse opal electrodes for supercapacitors. , 2011, Chemical communications.

[19]  G. Shi,et al.  Graphene based new energy materials , 2011 .

[20]  Zhong Lin Wang,et al.  Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. , 2011, Angewandte Chemie.

[21]  L. Qu,et al.  An Electrochemical Avenue to Green‐Luminescent Graphene Quantum Dots as Potential Electron‐Acceptors for Photovoltaics , 2011, Advanced materials.

[22]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[23]  L. Qu,et al.  An asymmetrically surface-modified graphene film electrochemical actuator. , 2010, ACS nano.

[24]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[25]  Lili Zhang,et al.  Graphene-based materials as supercapacitor electrodes , 2010 .

[26]  G. Shi,et al.  Self-assembled graphene hydrogel via a one-step hydrothermal process. , 2010, ACS nano.

[27]  C. Grigoropoulos,et al.  Assembly of Acircular SnO2 Rod Using Optical Tweezers and Laser Curing of Metal Nanoparticles , 2010 .

[28]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[29]  Norbert Fabre,et al.  Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor , 2010 .

[30]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[31]  Cunjiang Yu,et al.  Stretchable Supercapacitors Based on Buckled Single‐Walled Carbon‐Nanotube Macrofilms , 2009, Advanced materials.

[32]  Yi Cui,et al.  Carbon nanofiber supercapacitors with large areal capacitances , 2009 .

[33]  Wei Zhou,et al.  True solutions of single-walled carbon nanotubes for assembly into macroscopic materials , 2009, Nature Nanotechnology.

[34]  C. Brabec,et al.  Solar Power Wires Based on Organic Photovoltaic Materials , 2009, Science.

[35]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[36]  John A. Rogers,et al.  Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes , 2009, Science.

[37]  Costas P. Grigoropoulos,et al.  Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics , 2009 .

[38]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[39]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[40]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[41]  Max Shtein,et al.  Fiber based organic photovoltaic devices , 2008 .

[42]  Chao Zhang,et al.  Wire‐Shaped Flexible Dye‐sensitized Solar Cells , 2008 .

[43]  C. Grigoropoulos,et al.  All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles , 2007 .

[44]  David L. Carroll,et al.  Optical geometries for fiber-based organic photovoltaics , 2007 .

[45]  Yves Leterrier,et al.  Mechanical integrity of dye-sensitized photovoltaic fibers , 2006 .

[46]  G. Barbastathis,et al.  Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes , 2006 .

[47]  V. R. Raju,et al.  Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[48]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[49]  E. Elöd,et al.  Untersuchungen über die Knitterfestigkeit von Kunstseiden , 1938 .