Effective elastic properties of matrix composites with transversely-isotropic phases

The present work addresses the problem of calculation of the macroscopic effective elastic properties of composites containing transversely isotropic phases. As a first step, the contribution of a single inhomogeneity to the effective elastic properties is quantified. Relevant stiffness and compliance contribution tensors are derived for spheroidal inhomogeneities. The limiting cases of spherical, penny-shaped and cylindrical shapes are discussed in detail. The property contribution tensors are used to derive the effective elastic moduli of composite materials formed by transversely isotropic phases in two approximations: non-interaction approximation and effective field method. The results are compared with elastic moduli of quasi-random composites.

[1]  I. Sevostianov,et al.  Explicit cross-property correlations for anisotropic two-phase composite materials , 2002 .

[2]  Luigi Preziosi,et al.  Heterogeneous Media: Micromechanics Modeling Methods and Simulations , 2000 .

[3]  M. Yoo Elastic Interaction of Small Defects and Defect Clusters in Hexagonal Crystals , 1974, February 1.

[4]  Valery M. Levin,et al.  EFFECTIVE FIELD METHOD IN MECHANICS OF MATRIX COMPOSITE MATERIALS , 1994 .

[5]  Rodney Hill,et al.  Progress in solid mechanics , 1963 .

[6]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  M. Kachanov,et al.  Effective Moduli of Solids With Cavities of Various Shapes , 1994 .

[8]  I. Sevostianov,et al.  Effective elastic properties of the particulate composite with transversely isotropic phases , 2004 .

[9]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[10]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[11]  E. Kröner,et al.  Das Fundamentalintegral der anisotropen elastischen Differentialgleichungen , 1953 .

[12]  K. Markov,et al.  Elementary Micromechanics of Heterogeneous Media , 2000 .

[13]  I. Sevostianov,et al.  On quantitative characterization of microstructures and effective properties , 2005 .

[14]  J. D. Eshelby,et al.  The elastic field outside an ellipsoidal inclusion , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  I. Kunin,et al.  Elastic Media with Microstructure II , 1982 .

[16]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[17]  I. Sevostianov,et al.  On the modeling and design of piezocomposites with prescribed properties , 2001 .

[18]  P. Withers The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials , 1989 .

[19]  Donald F. Adams,et al.  Analysis of Composite Materials , 2002 .

[20]  I. Sevostianov,et al.  Compliance Tensors of Ellipsoidal Inclusions , 1999 .

[21]  M. Kachanov Solids with cracks and non-spherical pores: proper parameters of defect density and effective elastic properties , 1999 .

[22]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[23]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .