Bimetallic MOFs/MXene derived CoNi@C@Ti3C2Tx/TiO2 nanocomposites for high-efficiency electromagnetic wave absorption

[1]  Jie Mei,et al.  1D/2D CoTe_2@MoS_2 composites constructed by CoTe_2 nanorods and MoS_2 nanosheets for efficient electromagnetic wave absorption , 2023, Nano Research.

[2]  Jie Mei,et al.  Carbon nanotubes decorated FeNi/nitrogen-doped carbon composites for lightweight and broadband electromagnetic wave absorption , 2023, Journal of Materials Science & Technology.

[3]  R. Che,et al.  Synergistic Dielectric–Magnetic Enhancement via Phase‐Evolution Engineering and Dynamic Magnetic Resonance , 2023, Advanced Functional Materials.

[4]  Shicheng Wei,et al.  Electromagnetic wave absorption properties of core double-shell structured α-Fe(Si)@Fe3O4@SiO2 composites , 2023, Applied Surface Science.

[5]  M. Chang,et al.  Tuning microwave absorption properties of Ti3C2T MXene-based materials: Component optimization and structure modulation , 2023, Journal of Materials Science & Technology.

[6]  Juhua Luo,et al.  In situ construction of Co@nitrogen-doped carbon/Ni nanocomposite for broadband electromagnetic wave absorption , 2022, Carbon.

[7]  Chunhua Sun,et al.  Hierarchically flower-like structure assembled with porous nanosheet-supported MXene for ultrathin electromagnetic wave absorption , 2022, Chemical Engineering Journal.

[8]  Hudie Yuan,et al.  2D Ti3C2T MXene/MOFs composites derived CoNi bimetallic nanoparticles for enhanced microwave absorption , 2022, Chemical Engineering Journal.

[9]  Hongjing Wu,et al.  Oxygen Vacancy‐Induced Dielectric Polarization Prevails in the Electromagnetic Wave‐Absorbing Mechanism for Mn‐Based MOFs‐Derived Composites , 2022, Advanced Functional Materials.

[10]  Xuejiao Zhou,et al.  Manipulation of microstructure of MXene aerogel via metal ions-initiated gelation for electromagnetic wave absorption. , 2022, Journal of colloid and interface science.

[11]  Jiurong Liu,et al.  MnCo-MOF-74 derived porous MnO/Co/C heterogeneous nanocomposites for high-efficiency electromagnetic wave absorption , 2022, Carbon.

[12]  Xueqing Shi,et al.  Ni-MOF/Ti3C2Tx derived multidimensional hierarchical Ni/TiO2/C nanocomposites with lightweight and efficient microwave absorption , 2022, Ceramics International.

[13]  Hongjing Wu,et al.  Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials , 2022, Advanced science.

[14]  Shengrui Xu,et al.  Lotus-like Ni@NiO nanoparticles embedded porous carbon derived from MOF-74/cellulose nanocrystal hybrids as solid phase microextraction coating for ultrasensitive determination of chlorobenzenes from water. , 2022, Journal of hazardous materials.

[15]  Luyang Chen,et al.  Controllable transformation of CoNi-MOF-74 on Ni foam into hierarchical-porous Co(OH)2/Ni(OH)2 micro-rods with ultra-high specific surface area for energy storage , 2022, Chemical Engineering Journal.

[16]  R. Che,et al.  High-Density Anisotropy Magnetism Enhanced Microwave Absorption Performance in Ti3C2Tx MXene@Ni Microspheres. , 2021, ACS nano.

[17]  R. Che,et al.  Hierarchical Ti3 C2 Tx MXene/Carbon Nanotubes Hollow Microsphere with Confined Magnetic Nanospheres for Broadband Microwave Absorption. , 2021, Small.

[18]  Xian Wang,et al.  Bimetallic CoFe-MOF@Ti3C2Tx MXene Derived Composites for Broadband Microwave Absorption , 2021, Chemical Engineering Journal.

[19]  Yuming Zhou,et al.  Low-temperature carbonized biomimetic cellulose nanofiber/MXene composite membrane with excellent microwave absorption performance and tunable absorption bands , 2021, Chemical Engineering Journal.

[20]  Jiqi Wang,et al.  Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties , 2021 .

[21]  Guangsheng Wang,et al.  MXene–modulated 3D crosslinking network of hierarchical flower–like MOF derivatives towards ultra–efficient microwave absorption property , 2021, Journal of Materials Chemistry A.

[22]  Chongbo Liu,et al.  Polymetallic MOF-derived corn-like composites for magnetic-dielectric balance to facilitate broadband electromagnetic wave absorption , 2021, Carbon.

[23]  Pei Dong,et al.  Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions , 2021, Science advances.

[24]  R. A. Soomro,et al.  Advances in the Synthesis of 2D MXenes , 2021, Advanced materials.

[25]  Lili Liu,et al.  Confined Magnetic-Dielectric Balance Boosted Electromagnetic Wave Absorption. , 2021, Small.

[26]  Y. Gogotsi,et al.  The world of two-dimensional carbides and nitrides (MXenes) , 2021, Science.

[27]  Aitang Zhang,et al.  A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption , 2021 .

[28]  Tie-hu Li,et al.  Ti3C2Tx MXene Nanosheet/Metal–Organic Framework Composites for Microwave Absorption , 2020, ACS Applied Nano Materials.

[29]  P. Yin,et al.  Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber , 2020 .

[30]  Junjie Yang,et al.  Hierarchical Carbon Fiber@MXene@MoS2 Core‐sheath Synergistic Microstructure for Tunable and Efficient Microwave Absorption , 2020, Advanced Functional Materials.

[31]  Ying Huang,et al.  Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption , 2020 .

[32]  Jun Pyo Hong,et al.  Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene) , 2020, Science.

[33]  Jie Kong,et al.  Bimetallic MOF-derived hollow ZnNiC nano-boxes for efficient microwave absorption. , 2020, Nanoscale.

[34]  Luo Kong,et al.  Graphene and MXene Nanomaterials: Toward High‐Performance Electromagnetic Wave Absorption in Gigahertz Band Range , 2020, Advanced Functional Materials.

[35]  W. Cao,et al.  Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices , 2020 .

[36]  Xiaomiao Feng,et al.  Silica Modified Ordered Mesoporous Carbon for Optimized Impedance Matching Characteristic Enabling Lightweight and Effective Microwave Absorbers. , 2020, ACS applied materials & interfaces.

[37]  L. Wang,et al.  MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption , 2020 .

[38]  Jingquan Liu,et al.  Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption , 2020 .

[39]  W. Lu,et al.  Sandwich-Like Fe&TiO2@C Nanocomposites Derived from MXene/Fe-MOFs Hybrids for Electromagnetic Absorption , 2020, Nano-Micro Letters.

[40]  W. Lu,et al.  Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance , 2019 .

[41]  Jingquan Liu,et al.  Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials , 2019, Applied Surface Science.

[42]  L. Wang,et al.  NiCo Alloy/Carbon Nanorods Decorated with Carbon Nanotubes for Microwave Absorption , 2019, ACS Applied Nano Materials.

[43]  Jing Ouyang,et al.  Tri-Metallic FeCoNi@C Nanocomposite Hollow Spheres Derived from MOF with Superior Electromagnetic Wave Absorption Ability. , 2019, ACS applied materials & interfaces.

[44]  Yunhao Zhao,et al.  Boosted Interfacial Polarization from Multishell TiO2 @Fe3 O4 @PPy Heterojunction for Enhanced Microwave Absorption. , 2019, Small.

[45]  S. Jahani,et al.  A review on metal-organic frameworks: Synthesis and applications , 2019, TrAC Trends in Analytical Chemistry.

[46]  X. Zhang,et al.  Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles , 2019, Applied Surface Science.

[47]  Lai-fei Cheng,et al.  Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance , 2019, Carbon.

[48]  Wenxin Zhu,et al.  Amorphous Fe/Mn bimetal–organic frameworks: outer and inner structural designs for efficient arsenic(iii) removal , 2019, Journal of Materials Chemistry A.

[49]  Zhihong Yang,et al.  Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss , 2018, Carbon.

[50]  Shuangxi Nie,et al.  Highly Cuboid-Shaped Heterobimetallic Metal-Organic Frameworks Derived from Porous Co/ZnO/C Microrods with Improved Electromagnetic Wave Absorption Capabilities. , 2018, ACS applied materials & interfaces.

[51]  Yonghong Cheng,et al.  Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior , 2018 .

[52]  Xitian Zhang,et al.  Nickel Nanoparticle Encapsulated in Few-Layer Nitrogen-Doped Graphene Supported by Nitrogen-Doped Graphite Sheets as a High-Performance Electromagnetic Wave Absorbing Material. , 2018, ACS applied materials & interfaces.

[53]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[54]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[55]  Da Li,et al.  Microwave absorption properties of core double-shell FeCo/C/BaTiO₃ nanocomposites. , 2014, Nanoscale.

[56]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[57]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[58]  X. Dong,et al.  Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations , 2008 .

[59]  Yang Liu,et al.  Microwave absorption properties of the carbon-coated nickel nanocapsules , 2006 .

[60]  Shicheng Wei,et al.  Preparation of microcrystalline graphite/zinc ferrite composites with enhanced and tunable electromagnetic wave absorption using a high-temperature ball milling method , 2023, Materials Research Bulletin.

[61]  Jun Zhou,et al.  Rational construction of heterogeneous interfaces for bimetallic MOFs-derived/rGO composites towards optimizing the electromagnetic wave absorption , 2022, Chemical Engineering Journal.

[62]  R. Mittra,et al.  Design of lightweight, broad-band microwave absorbers using genetic algorithms , 1993 .