Simultaneous sparse approximation via greedy pursuit

A simple sparse approximation problem requests an approximation of a given input signal as a linear combination of T elementary signals drawn from a large, linearly dependent collection. An important generalization is simultaneous sparse approximation. Now one must approximate several input signals at once using different linear combinations of the same T elementary signals. This formulation appears, for example, when analyzing multiple observations of a sparse signal that have been contaminated with noise. A new approach to this problem is presented here: a greedy pursuit algorithm called simultaneous orthogonal matching pursuit. The paper proves that the algorithm calculates simultaneous approximations whose error is within a constant factor of the optimal simultaneous approximation error. This result requires that the collection of elementary signals be weakly correlated, a property that is also known as incoherence. Numerical experiments demonstrate that the algorithm often succeeds, even when the inputs do not meet the hypotheses of the proof.