Sparse Gaussian graphical models with unknown block structure

Recent work has shown that one can learn the structure of Gaussian Graphical Models by imposing an L1 penalty on the precision matrix, and then using efficient convex optimization methods to find the penalized maximum likelihood estimate. This is similar to performing MAP estimation with a prior that prefers sparse graphs. In this paper, we use the stochastic block model as a prior. This prefer graphs that are blockwise sparse, but unlike previous work, it does not require that the blocks or groups be specified a priori. The resulting problem is no longer convex, but we devise an efficient variational Bayes algorithm to solve it. We show that our method has better test set likelihood on two different datasets (motion capture and gene expression) compared to independent L1, and can match the performance of group L1 using manually created groups.

[1]  Takeo Kanade,et al.  Learning GMRF Structures for Spatial Priors , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  T. Speed,et al.  Gaussian Markov Distributions over Finite Graphs , 1986 .

[3]  E. George,et al.  APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .

[4]  Vwani P. Roychowdhury,et al.  Covariance selection for nonchordal graphs via chordal embedding , 2008, Optim. Methods Softw..

[5]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[6]  M. Drton,et al.  Model selection for Gaussian concentration graphs , 2004 .

[7]  R. Kohn,et al.  Parsimonious Covariance Matrix Estimation for Longitudinal Data , 2002 .

[8]  Carlos M. Carvalho,et al.  FLEXIBLE COVARIANCE ESTIMATION IN GRAPHICAL GAUSSIAN MODELS , 2008, 0901.3267.

[9]  A. Lenkoski Bayesian structural learning and estimation in Gaussian graphical models , 2008 .

[10]  David Maxwell Chickering,et al.  Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..

[11]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .

[12]  Daphne Koller,et al.  Efficient Structure Learning of Markov Networks using L1-Regularization , 2006, NIPS.

[13]  M. West,et al.  Sparse graphical models for exploring gene expression data , 2004 .

[14]  B. Schölkopf,et al.  High-Dimensional Graphical Model Selection Using ℓ1-Regularized Logistic Regression , 2007 .

[15]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[16]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[17]  Mark W. Schmidt,et al.  Optimizing Costly Functions with Simple Constraints: A Limited-Memory Projected Quasi-Newton Algorithm , 2009, AISTATS.

[18]  Mark W. Schmidt,et al.  Group Sparse Priors for Covariance Estimation , 2009, UAI.

[19]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the lasso , 2007, 0708.3517.

[20]  Alexandre d'Aspremont,et al.  Convex optimization techniques for fitting sparse Gaussian graphical models , 2006, ICML.

[21]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[22]  Martin J. Wainwright,et al.  High-Dimensional Graphical Model Selection Using ℓ1-Regularized Logistic Regression , 2006, NIPS.

[23]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[24]  David Heckerman,et al.  Dependency Networks for Density Estimation, Collaborative Filtering, and Data Visualization , 2000 .

[25]  Jianhua Z. Huang,et al.  Covariance matrix selection and estimation via penalised normal likelihood , 2006 .

[26]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[27]  Zoubin Ghahramani,et al.  Propagation Algorithms for Variational Bayesian Learning , 2000, NIPS.

[28]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[29]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[30]  Stephen Gould,et al.  Projected Subgradient Methods for Learning Sparse Gaussians , 2008, UAI.

[31]  C. Robert Kenley,et al.  Gaussian influence diagrams , 1989 .