Sparse Gaussian graphical models with unknown block structure
暂无分享,去创建一个
[1] Takeo Kanade,et al. Learning GMRF Structures for Spatial Priors , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[2] T. Speed,et al. Gaussian Markov Distributions over Finite Graphs , 1986 .
[3] E. George,et al. APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .
[4] Vwani P. Roychowdhury,et al. Covariance selection for nonchordal graphs via chordal embedding , 2008, Optim. Methods Softw..
[5] D. Botstein,et al. Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.
[6] M. Drton,et al. Model selection for Gaussian concentration graphs , 2004 .
[7] R. Kohn,et al. Parsimonious Covariance Matrix Estimation for Longitudinal Data , 2002 .
[8] Carlos M. Carvalho,et al. FLEXIBLE COVARIANCE ESTIMATION IN GRAPHICAL GAUSSIAN MODELS , 2008, 0901.3267.
[9] A. Lenkoski. Bayesian structural learning and estimation in Gaussian graphical models , 2008 .
[10] David Maxwell Chickering,et al. Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..
[11] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[12] Daphne Koller,et al. Efficient Structure Learning of Markov Networks using L1-Regularization , 2006, NIPS.
[13] M. West,et al. Sparse graphical models for exploring gene expression data , 2004 .
[14] B. Schölkopf,et al. High-Dimensional Graphical Model Selection Using ℓ1-Regularized Logistic Regression , 2007 .
[15] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[16] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[17] Mark W. Schmidt,et al. Optimizing Costly Functions with Simple Constraints: A Limited-Memory Projected Quasi-Newton Algorithm , 2009, AISTATS.
[18] Mark W. Schmidt,et al. Group Sparse Priors for Covariance Estimation , 2009, UAI.
[19] R. Tibshirani,et al. Sparse inverse covariance estimation with the lasso , 2007, 0708.3517.
[20] Alexandre d'Aspremont,et al. Convex optimization techniques for fitting sparse Gaussian graphical models , 2006, ICML.
[21] T. Snijders,et al. Estimation and Prediction for Stochastic Blockstructures , 2001 .
[22] Martin J. Wainwright,et al. High-Dimensional Graphical Model Selection Using ℓ1-Regularized Logistic Regression , 2006, NIPS.
[23] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[24] David Heckerman,et al. Dependency Networks for Density Estimation, Collaborative Filtering, and Data Visualization , 2000 .
[25] Jianhua Z. Huang,et al. Covariance matrix selection and estimation via penalised normal likelihood , 2006 .
[26] Olivier Ledoit,et al. A well-conditioned estimator for large-dimensional covariance matrices , 2004 .
[27] Zoubin Ghahramani,et al. Propagation Algorithms for Variational Bayesian Learning , 2000, NIPS.
[28] Christopher M. Bishop,et al. Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .
[29] Adam J. Rothman,et al. Sparse permutation invariant covariance estimation , 2008, 0801.4837.
[30] Stephen Gould,et al. Projected Subgradient Methods for Learning Sparse Gaussians , 2008, UAI.
[31] C. Robert Kenley,et al. Gaussian influence diagrams , 1989 .