Global Existence and Blow-Up Solutions and Blow-Up Estimates for Some Evolution Systems with p-Laplacian with Nonlocal Sources

This paper deals with p-Laplacian systems ut−div(|∇u|p−2∇u)=∫Ωvα(x, t)dx, x∈Ω, t>0, vt−div(|∇v|q−2∇v)=∫Ωuβ(x,t)dx, x∈Ω, t>0, with null Dirichlet boundary conditions in a smooth bounded domain Ω⊂ℝN, where p,q≥2, α,β≥1. We first get the nonexistence result for related elliptic systems of nonincreasing positive solutions. Secondly by using this nonexistence result, blow up estimates for above p-Laplacian systems with the homogeneous Dirichlet boundary value conditions are obtained under Ω=BR={x∈ℝN:|x| 0). Then under appropriate hypotheses, we establish local theory of the solutions and obtain that the solutions either exist globally or blow up in finite time.

[1]  Fucai Li,et al.  Global existence and blow-up of solutions to a nonlocal quasilinear degenerate parabolic system☆ , 2007 .

[2]  G. Caristi,et al.  Blow-Up Estimates of Positive Solutions of a Parabolic System , 1994 .

[3]  Yang Zuo-dong Nonexistence of Positive Solutions to a Quasi-Linear Elliptic Equation and Blow-Up Estimates for a Nonlinear Heat Equation , 2006 .

[4]  Keng Deng,et al.  Global existence for degenerate parabolic equations with a non‐local forcing , 1997 .

[5]  Lu Qi-shao Blow-up Estimates for a Non-Newtonian Filtration Equation , 2003 .

[6]  Fucai Li,et al.  ASYMPTOTIC BEHAVIOR OF SOLUTION FOR NONLOCAL REACTION-DIFFUSION SYSTEM , 2003 .

[7]  L. Martinson,et al.  Unsteady shear flows of a conducting fluid with a rheological power law , 1971 .

[8]  Mingxin Wang,et al.  Properties of Positive Solutions for Non‐local Reaction–Diffusion Problems , 1996 .

[9]  Fucai Li,et al.  Global and blow-up solutions to a p-Laplacian equation with nonlocal source , 2003 .

[10]  Juan Luis Vázquez,et al.  On the equation of turbulent filtration in one-dimensional porous media , 1986 .

[11]  M. A. Herrero,et al.  A semilinear parabolic system in a bounded domain , 1993 .

[12]  J. Zhao Existence and Nonexistence of Solutions for ut = div(|∇u|p − 2 ∇u) + f(∇u, u, x, t) , 1993 .

[13]  M. Grinfeld,et al.  Local vs. non-local interactions in population dynamics , 1989 .

[14]  M. García-Huidobro,et al.  Regular and singular solutions of a quasilinear equation with weights , 2001 .

[15]  Philippe Souplet,et al.  Uniform Blow-Up Profiles and Boundary Behavior for Diffusion Equations with Nonlocal Nonlinear Source , 1999 .

[16]  Qishao Lu,et al.  Nonexistence of positive solutions to a quasilinear elliptic system and blow-up estimates for a quasilinear reaction-diffusion system , 2003 .

[17]  C. V. Pao,et al.  Blowing-up of solution for a nonlocal reaction-diffusion problem in combustion theory , 1992 .

[18]  Hitoshi Ishii,et al.  Asymptotic stability and blowing up of solutions of some nonlinear equations , 1977 .

[19]  Fred B. Weissler,et al.  An L∞ blow‐up estimate for a nonlinear heat equation , 1985 .