Contribution aux méthodes de classification non supervisée via des approches prétopologiques et d'agrégation d'opinions. (Contribution to the data clustering methods via pretopological approaches and of opinions aggregation)
暂无分享,去创建一个
[1] Michel Lamure. Espaces abstraits et reconnaissance des formes : application au traitement des images digitales , 1987 .
[2] Gilbert Saporta,et al. Probabilités, Analyse des données et statistique , 1991 .
[3] Paul S. Bradley,et al. Scaling Clustering Algorithms to Large Databases , 1998, KDD.
[4] Khaled S. Al-Sultan,et al. A Tabu search approach to the clustering problem , 1995, Pattern Recognit..
[5] James C. Bezdek,et al. Genetic algorithm guided clustering , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.
[6] C. Alippi,et al. Cluster partitioning in image analysis classification: a genetic algorithm approach , 1992, CompEuro 1992 Proceedings Computer Systems and Software Engineering.
[7] Donald R. Jones,et al. Solving Partitioning Problems with Genetic Algorithms , 1991, International Conference on Genetic Algorithms.
[8] Douglas H. Fisher,et al. Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.
[9] Hans-Peter Kriegel,et al. OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.
[10] Chris H. Q. Ding,et al. Spectral Relaxation for K-means Clustering , 2001, NIPS.
[11] Pedro Larrañaga,et al. Applying genetic algorithms to search for the best hierarchical clustering of a dataset , 1999, Pattern Recognit. Lett..
[12] Otto Opitz,et al. Aggregation of Ordinal Judgements Based on Condorcet's Majority Rule , 2005, Data Analysis and Decision Support.
[13] Hans-Hermann Bock,et al. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data , 2000 .
[14] Eytan Domany,et al. Data Clustering Using a Model Granular Magnet , 1997, Neural Computation.
[15] C. J. Jardine,et al. The structure and construction of taxonomic hierarchies , 1967 .
[16] Daniel A. Keim,et al. An Efficient Approach to Clustering in Large Multimedia Databases with Noise , 1998, KDD.
[17] Kevin B. Korb,et al. Causal Discovery via MML , 1996, ICML.
[18] Jean-Pierre Barthélemy,et al. The Median Procedure for Partitions , 1993, Partitioning Data Sets.
[19] George Karypis,et al. A Comparison of Document Clustering Techniques , 2000 .
[20] Richard C. Dubes,et al. Experiments in projection and clustering by simulated annealing , 1989, Pattern Recognit..
[21] Mathieu Vrac. Analyse et modélisation de données probabilistes par décomposition de mélange de copules et application à une base de données climatologiques , 2002 .
[22] Karl Pearson F.R.S.. LIII. On lines and planes of closest fit to systems of points in space , 1901 .
[23] A. D. Gordon,et al. Classification : Methods for the Exploratory Analysis of Multivariate Data , 1981 .
[24] Desire L. Massart,et al. The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis , 1983 .
[25] J. Rissanen,et al. Modeling By Shortest Data Description* , 1978, Autom..
[26] Sudipto Guha,et al. ROCK: a robust clustering algorithm for categorical attributes , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).
[27] Tian Zhang,et al. BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.
[28] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[29] Michel Manago. Intégration de techniques numériques et symboliques en apprentissage automatique , 1988 .
[30] T. Klastorin. Assessing Cluster Analysis Results , 1983 .
[31] E. Diday. Crossings, Orders and Ultrametrics: Application to Visualization of Consensus for Comparing Classifications , 1982 .
[32] Allen Gersho,et al. Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.
[33] Jiong Yang,et al. STING: A Statistical Information Grid Approach to Spatial Data Mining , 1997, VLDB.
[34] G H Ball,et al. A clustering technique for summarizing multivariate data. , 1967, Behavioral science.
[35] Jon M. Kleinberg,et al. Clustering categorical data: an approach based on dynamical systems , 2000, The VLDB Journal.
[36] H. Ross. Principles of Numerical Taxonomy , 1964 .
[37] Phipps Arabie,et al. AN OVERVIEW OF COMBINATORIAL DATA ANALYSIS , 1996 .
[38] R C Durfee,et al. A METHOD OF CLUSTER ANALYSIS. , 1970, Multivariate behavioral research.
[39] Teuvo Kohonen,et al. Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.
[40] Manish Sarkar,et al. A clustering algorithm using an evolutionary programming-based approach , 1997, Pattern Recognit. Lett..
[41] André Hardy,et al. An examination of procedures for determining the number of clusters in a data set , 1994 .
[42] M. V. Velzen,et al. Self-organizing maps , 2007 .
[43] Cheng-Yan Kao,et al. Applying the genetic approach to simulated annealing in solving some NP-hard problems , 1993, IEEE Trans. Syst. Man Cybern..
[44] C. S. Wallace,et al. Estimation and Inference by Compact Coding , 1987 .
[45] A. Raftery,et al. Model-based Gaussian and non-Gaussian clustering , 1993 .
[46] Geert De Soete,et al. A least squares algorithm for fitting an ultrametric tree to a dissimilarity matrix , 1984, Pattern Recognit. Lett..
[47] Ralph Mason Dreger,et al. Microcomputer Programs for the Rand Index of Cluster Similarity , 1986 .
[48] W. T. Williams,et al. Dissimilarity Analysis: a new Technique of Hierarchical Sub-division , 1964, Nature.
[49] S. Arnold. A Test for Clusters , 1979 .
[50] S. C. Johnson. Hierarchical clustering schemes , 1967, Psychometrika.
[51] Peter Cheeseman,et al. Bayesian classification theory , 1991 .
[52] P. C. Schuur,et al. Classification of Acceptance Criteria for the Simulated Annealing Algorithm , 1997, Math. Oper. Res..
[53] Roger J.-B. Wets,et al. Minimization by Random Search Techniques , 1981, Math. Oper. Res..
[54] W. Krzanowski,et al. A Criterion for Determining the Number of Groups in a Data Set Using Sum-of-Squares Clustering , 1988 .
[55] Dimitrios Gunopulos,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.
[56] Anil K. Jain,et al. Algorithms for Clustering Data , 1988 .
[57] C. Ribeiro,et al. Clustering and clique partitioning: Simulated annealing and tabu search approaches , 1992 .
[58] Edwin Diday,et al. Symbolic Data Clustering , 2005 .
[59] G. W. Milligan,et al. An examination of procedures for determining the number of clusters in a data set , 1985 .
[60] Robert Tibshirani,et al. Estimating the number of clusters in a data set via the gap statistic , 2000 .
[61] William M. Rand,et al. Objective Criteria for the Evaluation of Clustering Methods , 1971 .
[62] F. Marcotorchino,et al. Agr?gation des similarit?s en classification automatique , 1981 .
[63] James C. Bezdek,et al. Clustering with a genetically optimized approach , 1999, IEEE Trans. Evol. Comput..
[64] M. Chavent,et al. Analyse de données symboliques : une méthode divisive de classification , 1997 .
[65] Günter Rudolph,et al. Massively Parallel Simulated Annealing and Its Relation to Evolutionary Algorithms , 1993, Evolutionary Computation.
[66] Michael R. Anderberg,et al. Cluster Analysis for Applications , 1973 .
[67] H. Kriegel,et al. Spatial Data Mining: Database Primitives, Algorithms and Efficient DBMS Support , 2000, Data Mining and Knowledge Discovery.
[68] Anil K. Jain,et al. Data clustering: a review , 1999, CSUR.
[69] Aidong Zhang,et al. WaveCluster: a wavelet-based clustering approach for spatial data in very large databases , 2000, The VLDB Journal.
[70] Adrian E. Raftery,et al. Inference in model-based cluster analysis , 1997, Stat. Comput..
[71] Jiawei Han,et al. CLARANS: A Method for Clustering Objects for Spatial Data Mining , 2002, IEEE Trans. Knowl. Data Eng..
[72] C. B. Lucasius,et al. On k-medoid clustering of large data sets with the aid of a genetic algorithm: background, feasiblity and comparison , 1993 .
[73] Dorothea Heiss-Czedik,et al. An Introduction to Genetic Algorithms. , 1997, Artificial Life.
[74] Alan Agresti,et al. The Measurement of Classification Agreement: An Adjustment to the Rand Statistic for Chance Agreement , 1984 .
[75] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[76] M. Fraboni,et al. The Wais-R Number-Of-Factors Quandary:A Cluster Analytic Approach Toconstruct Validation , 1992 .
[77] Sankar K. Pal,et al. Fuzzy models for pattern recognition , 1992 .
[78] Vijay V. Raghavan,et al. A clustering strategy based on a formalism of the reproductive process in natural systems , 1979, SIGIR '79.
[79] Greg Hamerly,et al. Learning the k in k-means , 2003, NIPS.
[80] Hans-Peter Kriegel,et al. A distribution-based clustering algorithm for mining in large spatial databases , 1998, Proceedings 14th International Conference on Data Engineering.
[81] W. Eddy,et al. Approximate single linkage cluster analysis of large data sets in high-dimensional spaces , 1996 .
[82] Charles L. Lawson,et al. Solving least squares problems , 1976, Classics in applied mathematics.
[83] Emile H. L. Aarts,et al. Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.
[84] R. Michalski,et al. Learning from Observation: Conceptual Clustering , 1983 .
[85] Andrew Foss,et al. A non-parametric approach to web log analysis , 2001 .
[86] Robert C. Kohberger,et al. Cluster Analysis (3rd ed.) , 1994 .
[87] M. Narasimha Murty,et al. Clustering with evolution strategies , 1994, Pattern Recognit..
[88] Vincent Kanade,et al. Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.
[89] M. C. Cooper,et al. The effect of measurement error on determining the number of clusters in clusteranalysis , 1988 .
[90] Rita Cucchiara,et al. Analysis and Comparison of different Genetic Models for the Clustering problem in Image Analysis , 1993 .
[91] Francisco de A. T. de Carvalho,et al. Clustering of interval data based on city-block distances , 2004, Pattern Recognit. Lett..
[92] Nicolas Nicoloyannis. Structures prétopologiques et classification automatique : le logiciel DEMON , 1988 .
[93] Sudipto Guha,et al. CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.
[94] Yoshiko Wakabayashi,et al. A cutting plane algorithm for a clustering problem , 1989, Math. Program..
[95] André Hardy,et al. Une nouvelle approche des problèmes de classification automatique , 1982 .
[96] L. Hubert. Monotone invariant clustering procedures , 1973 .
[97] Jean-Paul Rasson,et al. The gap test: an optimal method for determining the number of natural classes in cluster analysis , 1994 .
[98] Petra Perner,et al. Data Mining - Concepts and Techniques , 2002, Künstliche Intell..
[99] J. Chandon,et al. Construction de l'ultramétrique la plus proche d'une dissimilarité au sens des moindres carrés , 1980 .
[100] F. Cailliez. Analyse des données , 1984 .
[101] Jaideep Srivastava,et al. Data Preparation for Mining World Wide Web Browsing Patterns , 1999, Knowledge and Information Systems.
[102] J. Bezdek. Numerical taxonomy with fuzzy sets , 1974 .
[103] S. Régnier,et al. Sur quelques aspects mathématiques des problèmes de classification automatique , 1983 .
[104] Boris Mirkin,et al. Mathematical Classification and Clustering , 1996 .
[105] Gérard Govaert,et al. Gaussian parsimonious clustering models , 1995, Pattern Recognit..
[106] B. Everitt. Unresolved Problems in Cluster Analysis , 1979 .
[107] Gérard Govaert,et al. Clustering in Pattern Recognition , 1981 .
[108] S. Dudoit,et al. Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .
[109] Tian Zhang,et al. BIRCH: A New Data Clustering Algorithm and Its Applications , 1997, Data Mining and Knowledge Discovery.
[110] J. Hartigan. Statistical theory in clustering , 1985 .
[111] Vance Faber,et al. Clustering and the continuous k-means algorithm , 1994 .
[112] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[113] Daniel P. Fasulo,et al. An Analysis of Recent Work on Clustering Algorithms , 1999 .
[114] Géraldine Polaillon. Organisation et interprétation par les treillis de Galois de données de type multivalué, intervalle ou histogramme , 1998 .
[115] David E. Goldberg,et al. The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..
[116] L. A. Goodman,et al. Social Choice and Individual Values , 1951 .
[117] Edwin Diday,et al. Orders and overlapping clusters by pyramids , 1987 .
[118] James P. Crutchfield,et al. Statistical Dynamics of the Royal Road Genetic Algorithm , 1999, Theor. Comput. Sci..
[119] L. Infante,et al. Hierarchical Clustering , 2020, International Encyclopedia of Statistical Science.
[120] Inderjit S. Dhillon,et al. Efficient Clustering of Very Large Document Collections , 2001 .
[121] Ricardo Vilalta,et al. Cluster Validation , 2009, Encyclopedia of Data Warehousing and Mining.
[122] David B. Fogel,et al. Evolutionary algorithms in theory and practice , 1997, Complex.
[123] E. Forgy,et al. Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .
[124] Babu O. Narayanan,et al. On the approximability of numerical taxonomy , 1996 .
[125] Richard O. Duda,et al. Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.
[126] Jeffrey Heer,et al. Identification of Web User Traffic Composition using Multi-Modal Clustering and Information Scent , 2000 .
[127] M. Narasimha Murty,et al. A comparison between conceptual clustering and conventional clustering , 1990, Pattern Recognit..
[128] G. Celeux,et al. An entropy criterion for assessing the number of clusters in a mixture model , 1996 .
[129] Ron Shamir,et al. Clustering Gene Expression Patterns , 1999, J. Comput. Biol..
[130] Jiawei Han,et al. Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.
[131] Régis Girard. Classification conceptuelle sur des données arborescentes et imprécises , 1997 .
[132] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[133] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[134] Johannes Gehrke,et al. CACTUS—clustering categorical data using summaries , 1999, KDD '99.
[135] Ryszard S. Michalski,et al. Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[136] A. D. Gordon. A Review of Hierarchical Classification , 1987 .