A combined array-based comparative genomic hybridization and functional library screening approach identifies mir-30d as an oncomir in cancer.

Oncomirs are microRNAs (miRNA) that acts as oncogenes or tumor suppressor genes. Efficient identification of oncomirs remains a challenge. Here we report a novel, clinically guided genetic screening approach for the identification of oncomirs, identifying mir-30d through this strategy. mir-30d regulates tumor cell proliferation, apoptosis, senescence, and migration. The chromosomal locus harboring mir-30d was amplified in more than 30% of multiple types of human solid tumors (n = 1,283). Importantly, higher levels of mir-30d expression were associated significantly with poor clinical outcomes in ovarian cancer patients (n = 330, P = 0.0016). Mechanistic investigations suggested that mir-30d regulates a large number of cancer-associated genes, including the apoptotic caspase CASP3. The guided genetic screening approach validated by this study offers a powerful tool to identify oncomirs that may have utility as biomarkers or targets for drug development.

[1]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Xiuping Liu,et al.  Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells , 2009, Autophagy.

[3]  C. Croce,et al.  Targeting microRNAs in cancer: rationale, strategies and challenges , 2010, Nature Reviews Drug Discovery.

[4]  Yong Li,et al.  Negative Regulation of the Tumor Suppressor p53 Gene by MicroRNAs , 2010, Oncogene.

[5]  C. Croce,et al.  MicroRNA signatures in human cancers , 2006, Nature Reviews Cancer.

[6]  Muller Fabbri,et al.  A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. , 2005, The New England journal of medicine.

[7]  Lin Zhang,et al.  The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis , 2008, Nature Cell Biology.

[8]  Reuven Agami,et al.  Regulation of the p27Kip1 tumor suppressor by miR‐221 and miR‐222 promotes cancer cell proliferation , 2007 .

[9]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[10]  P. Sharp,et al.  Small RNA Regulators of Gene Expression , 2008, Cell.

[11]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[12]  Andrea Ventura,et al.  MicroRNAs and Cancer: Short RNAs Go a Long Way , 2009, Cell.

[13]  Tara L. Naylor,et al.  microRNAs exhibit high frequency genomic alterations in human cancer. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[14]  F. Yu,et al.  Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells , 2010, Oncogene.

[15]  F. Slack,et al.  OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma , 2010, Nature.

[16]  Konstantinos J. Mavrakis,et al.  A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL) , 2011, Nature Genetics.

[17]  A. Hatzigeorgiou,et al.  The DIANA-mirExTra Web Server: From Gene Expression Data to MicroRNA Function , 2010, PloS one.

[18]  Howard Y. Chang,et al.  Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis , 2010, Nature.

[19]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[20]  Jincheng Li,et al.  miR-30 Regulates Mitochondrial Fission through Targeting p53 and the Dynamin-Related Protein-1 Pathway , 2010, PLoS genetics.

[21]  Reuven Agami,et al.  A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. , 2006, Cell.

[22]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[23]  Thomas D. Schmittgen,et al.  Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. , 2007, Cancer cell.

[24]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[25]  J. Zavadil,et al.  miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. , 2011, Cancer cell.

[26]  P. Andrew Futreal,et al.  Amplification and Overexpression of Hsa-miR-30b, Hsa-miR-30d and KHDRBS3 at 8q24.22-q24.23 in Medulloblastoma , 2009, PloS one.

[27]  Robert A. Weinberg,et al.  Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model , 2010, Nature Biotechnology.

[28]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[29]  R. Stephens,et al.  Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. , 2006, Cancer cell.

[30]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[31]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[32]  Ming Yao,et al.  MicroRNA‐30d promotes tumor invasion and metastasis by targeting Galphai2 in hepatocellular carcinoma , 2010, Hepatology.

[33]  Stephen J. Elledge,et al.  Profiling Essential Genes in Human Mammary Cells by Multiplex RNAi Screening , 2008, Science.

[34]  J. Steitz,et al.  miR-29 and miR-30 regulate B-Myb expression during cellular senescence , 2010, Proceedings of the National Academy of Sciences.

[35]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[36]  Ji Luo,et al.  Cancer Proliferation Gene Discovery Through Functional Genomics , 2008, Science.

[37]  P. Kruk,et al.  Simian virus 40-transformed human ovarian surface epithelial cells escape normal growth controls but retain morphogenetic responses to extracellular matrix. , 1992, American journal of obstetrics and gynecology.

[38]  Andrea L Kasinski,et al.  MicroRNA therapeutics in preclinical cancer models. , 2011, The Lancet. Oncology.

[39]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[40]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[41]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[42]  Michael T. McManus,et al.  MicroRNAs and cancer. , 2003, Seminars in cancer biology.

[43]  Mitsuru Nenoi,et al.  Regulation of , 2004 .

[44]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[45]  Jan-Fang Cheng,et al.  Dicer, Drosha, and outcomes in patients with ovarian cancer. , 2008, The New England journal of medicine.

[46]  Xi Chen,et al.  Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[47]  A. Sood,et al.  MicroRNA therapeutics: principles, expectations, and challenges , 2011, Chinese journal of cancer.

[48]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[49]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[50]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[51]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.