Centers and isochronous centers for generalized quintic systems

In this paper we classify the centers and the isochronous centers of certain polynomial differential systems in R 2 of degree d ? 5 odd that in complex notation are z ? = ( λ + i ) z + ( z z ? ) d - 5 2 ( A z 5 + B z 4 z ? + C z 3 z ? 2 + D z 2 z ? 3 + E z z ? 4 + F z ? 5 ) , where z = x + i y , λ ? R and A , B , C , D , E , F ? C . Note that if d = 5 we obtain the class of polynomial differential systems in the form of a linear system with homogeneous polynomial nonlinearities of degree 5.Due to the huge computations required for computing the necessary and sufficient conditions for the characterization of the centers and isochronous centers, our study uses algorithms of computational algebra based on the Grobner basis theory and on modular arithmetics.

[1]  Dana Schlomiuk,et al.  Algebraic and Geometric Aspects of the Theory of Polynomial Vector Fields , 1993 .

[2]  Jaume Giné,et al.  Centers for a class of generalized quintic polynomial differential systems , 2014, Appl. Math. Comput..

[3]  J. Giné On the first integrals in the center problem , 2013 .

[4]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[5]  Valery G. Romanovski,et al.  Linearizability of linear systems perturbed by fifth degree homogeneous polynomials , 2007 .

[6]  Jaume Llibre,et al.  Classification of the centers, their cyclicity and isochronicity for a class of polynomial differential systems generalizing the linear systems with cubic homogeneous nonlinearities , 2009 .

[7]  Jaume Llibre,et al.  Classification of the centers, their cyclicity and isochronicity for the generalized quadratic polynomial differential systems , 2009 .

[8]  R. McCann A classification of centers , 1969 .

[9]  Jaume Giné,et al.  Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial , 1999 .

[10]  A. Andronov,et al.  Qualitative Theory of Second-order Dynamic Systems , 1973 .

[11]  Jaume Giné,et al.  Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities , 2013 .

[12]  Víctor Mañosa,et al.  Algebraic Properties of the Liapunov and Period Constants , 1997 .

[13]  M. Poincaré,et al.  Sur Ľintégration algébrique des équations différentielles du premier ordre et du premier degré , 1891 .

[14]  Massimo Villarini,et al.  Regularity properties of the period function near a center of a planar vector field , 1992 .

[15]  J. Giné,et al.  Integrability of a linear center perturbed by a fifth degree homogeneous polynomial , 1997 .

[16]  Jaume Llibre,et al.  Classification of the centers, of their cyclicity and isochronicity for two classes of generalized quintic polynomial differential systems , 2009 .

[17]  Jaume Giné,et al.  Implementation of a new algorithm of computation of the Poincaré-Liapunov constants , 2004 .

[18]  Valery G. Romanovski,et al.  Linearizability conditions of time-reversible quartic systems having homogeneous nonlinearities , 2008 .

[19]  Jaume Giné,et al.  Integrability of a linear center perturbed by a fourth degree homogeneous polynomial , 1996 .

[20]  A. M. Li︠a︡punov Problème général de la stabilité du mouvement , 1949 .

[21]  D. Schlomiuk,et al.  Algebraic particular integrals, integrability and the problem of the center , 1993 .

[22]  Jaume Llibre,et al.  Classification of the centers and isochronous centers for a class of quartic-like systems , 2009 .

[23]  Jaume Giné,et al.  On the Integrability of Two-Dimensional Flows , 1999 .

[24]  Jaume Llibre,et al.  Centers and Isochronous Centers for Two Classes of Generalized Seventh and Ninth Systems , 2010 .

[25]  C. Valls,et al.  CENTERS FOR GENERALIZED QUINTIC POLYNOMIAL DIFFERENTIAL SYSTEMS , 2017 .

[26]  C. Valls,et al.  Centers for a 6-parameter family of polynomial vector fields of arbitrary degree , 2008 .

[27]  Wentao Huang,et al.  Linearizability conditions of a time-reversible quartic-like system , 2011 .

[28]  Remarks on "The classification of reversible cubic systems with center" , 1996 .

[29]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[30]  Valery G. Romanovski,et al.  An approach to solving systems of polynomials via modular arithmetics with applications , 2011, J. Comput. Appl. Math..

[31]  Jaume Giné On the Centers of Planar Analytic Differential Systems , 2007, Int. J. Bifurc. Chaos.

[32]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[33]  H. Zoladek,et al.  The classification of reversible cubic systems with center , 1994 .

[34]  N. N. Bautin,et al.  On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type , 1954 .

[35]  Jaume Giné,et al.  Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomials , 2000 .

[36]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[37]  Jaume Llibre,et al.  Classification of the centers and their isochronicity for a class of polynomial differential systems of arbitrary degree , 2011 .

[38]  J. Giné The Center Problem for a Linear Center Perturbed by Homogeneous Polynomials , 2006 .

[39]  Jaume Giné,et al.  On the Poincare--Lyapunov constants and the Poincare series , 2001 .

[40]  Dana Schlomiuk Algebraic particular integrals, integrability and the problem of the center , 1993 .