On Core Jakobids and Excavate Taxa: The Ultrastructure of Jakoba incarcerata

Abstract The cellular organisation of the ‘excavate’ flagellate Jakoba incarcerata Bernard, Simpson and Patterson 2000 is described. Cells have one nucleus and dictyosome. The putative mitochondria lack cristae. Two flagella (anterior and posterior) insert anterior to the feeding groove. The posterior flagellum bears a dorsal vane. An ‘anterior’ microtubular root arises against the anterior basal body. Two main microtubular roots, left and right, and a singlet ‘root’ arise around the posterior basal body and support the groove. Non-microtubular fibres termed ‘A’, ‘B’, ‘I’, and ‘composite’ associate with the right root. A multilaminar ‘C’ fibre associates with the left root. The cytoskeleton of J. incarcerata indicates a common ancestry with other excavate taxa (i.e. diplomonads, retortamonads, heteroloboseids, ‘core jakobids’, Malawimonas, Carpediemonas, and Trimastix). Overall, J. incarcerata is most similar to (other) core jakobids, namely Jakoba libera, Reclinomonas, and Histiona. We regard J. incarcerata as a core jakobid and identify the group by the synapomorphy ‘vanes restricted to dorsal side of the posterior flagellum’. The anterior root and position of the B fibre (and presence of dense inclusions in the cartwheels and a conscpicuous singlet root-associated fibre) in J. incarcerata are novel for core jakobids and argue for close relationships with Trimastix and/or Heterolobosea. The C fibre is similar in substructure to the costal fibre of parabasalids and it is possible that the structures are homologous.

[1]  B. Leadbeater,et al.  The flagellates : unity, diversity and evolution , 2001 .

[2]  M. Sogin,et al.  Evolutionary relationships among "jakobid" flagellates as indicated by alpha- and beta-tubulin phylogenies. , 2001, Molecular biology and evolution.

[3]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[4]  A. Simpson,et al.  The ultrastructure of Trimastix marina Kent 1880 (Eukaryota), an excavate flagellate , 2000 .

[5]  David J. Patterson,et al.  Some free-living flagellates (protista) from anoxic habitats , 2000 .

[6]  David J. Patterson,et al.  The ultrastructure of Carpediemonas membranifera (Eukaryota) with reference to the “excavate hypothesis” , 1999 .

[7]  C. O'kelly,et al.  Malawimonas jakobiformis n. gen., n. sp. (Malawimonadidae n. fam.): A Jakoba‐like Heterotrophic Nanoflagellate with Discoidal Mitochondrial Cristae , 1999 .

[8]  C. O'kelly,et al.  Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al.: similarities of Trimastix species with retortamonad and jakobid flagellates. , 1999, Protist.

[9]  T. Cavalier-smith Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2 , 1999, The Journal of eukaryotic microbiology.

[10]  B. Lang,et al.  A Comparative Genomics Approach to the Evolution of Eukaryotes and their Mitochondria 1 , 1999, The Journal of eukaryotic microbiology.

[11]  A. Simpson,et al.  Free-living flagellates from anoxic habitats and the assembly of the eukaryotic cell. , 1999, The Biological bulletin.

[12]  T. Embley,et al.  Early branching eukaryotes? , 1998, Current opinion in genetics & development.

[13]  M. Sogin,et al.  New Insights into the Phylogeny of Trichomonads Inferred from Small Subunit rRNA Sequences. , 1998, Protist.

[14]  G. McFadden,et al.  Phylogenetic Diversity of Parabasalian Symbionts from Termites, Including the Phylogenetic Position of Pseudotrypanosoma and Trichonympha , 1998, The Journal of eukaryotic microbiology.

[15]  D. Sankoff,et al.  Genome structure and gene content in protist mitochondrial DNAs. , 1998, Nucleic acids research.

[16]  C. O'kelly Ultrastructure of trophozoites, zoospores and cysts of Reclinomonas americana Flavin & Nerad, 1993 (Protista incertae sedis: Histionidae) , 1997 .

[17]  A. Simpson,et al.  An ultrastructural study of a free-living retortamonad, Chilomastix cuspidata (Larsen & Patterson, 1990) n. comb. (Retortamonadida, Protista) , 1997 .

[18]  G. Brugerolle,et al.  Ultrastructure of Trimastix convexa hollande, an amitochondriate anaerobic flagellate with a previously undescribed organization , 1997 .

[19]  D. Sankoff,et al.  An ancestral mitochondrial DNA resembling a eubacterial genome in miniature , 1997, Nature.

[20]  J. Palmer,et al.  The mitochondrion that time forgot , 1997, Nature.

[21]  C. O'kelly The Jakobid Flagellates: Structural Features of Jakoba, Reclinomonas and Histiona and Implications for the Early Diversification of Eukaryotes , 1993 .

[22]  M. A. Farmer Ultrastructure of Ditrichomonas honigbergii N. G., N. Sp. (Parabasalia) and Its Relationship to Amitochondrial Protists , 1993 .

[23]  G. Brugerolle,et al.  Cytoskeleton in trichomonads: I. Immunological and biochemical comparative study of costal proteins in the genus Tritrichomonas. , 1993, European journal of protistology.

[24]  D. Patterson Jakoba libera (Ruinen, 1938), a heterotrophic flagellate from deep oceanic sediments , 1990, Journal of the Marine Biological Association of the United Kingdom.

[25]  A. V. Grimstone,et al.  Structure, protein composition and birefringence of the costa: a motile flagellar root fibre in the flagellate Trichomonas. , 1979, Journal of cell science.

[26]  G. Brugerolle Etude Ultrastructurale du Trophozoite et du Kyste chez le Genre Chilomastix Alexeieff, 1910 (Zoomastigophorea, Retortamonadida Grassé, 1952) , 1973 .

[27]  P. J. Keeling,et al.  Parabasalian flagellates are ancient eukaryotes. , 2000, Nature.

[28]  G. Brugerolle,et al.  Striated fibers in trichomonads: costa proteins represent a new class of proteins forming striated roots. , 1994, Cell motility and the cytoskeleton.