Generalized basic probability assignments

Dempster–Shafer theory allows to construct belief functions from (precise) basic probability assignments. The present paper extends this idea substantially. By considering sets of basic probability assignments, an appealing constructive approach to general interval probability is achieved, which allows for a very flexible modelling of uncertain knowledge.

[1]  Jf Baldwin Advances in the Dempster-Shafer theory of evidence , 1994 .

[2]  Thomas Augustin Expected utility within a generalized concept of probability — a comprehensive framework for decision making under ambiguity , 2002 .

[3]  Willi Hock,et al.  Lecture Notes in Economics and Mathematical Systems , 1981 .

[4]  T. Fine,et al.  Towards a Frequentist Theory of Upper and Lower Probability , 1982 .

[5]  L. Shapley Cores of convex games , 1971 .

[6]  G. Cooman,et al.  Lower previsions induced by multi-valued mappings , 2005 .

[7]  P. J. Huber,et al.  Minimax Tests and the Neyman-Pearson Lemma for Capacities , 1973 .

[8]  R. Holmes Geometric Functional Analysis and Its Applications , 1975 .

[9]  Rolf Haenni,et al.  Towards a Unifying Theory of Logical and Probabilistic Reasoning , 2005, ISIPTA.

[10]  Thomas Augustin Optimal decisions under complex uncertainty – basic notions and a general algorithm for data‐based decision making with partial prior knowledge described by interval probability , 2004 .

[11]  E. Kofler,et al.  Entscheidungen bei unvollständiger Information , 1976 .

[12]  D. Denneberg Non-additive measure and integral , 1994 .

[13]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[14]  Kurt Weichselberger Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung I , 2001 .

[15]  G. Choquet Theory of capacities , 1954 .

[16]  Kurt Weichselberger Axiomatic foundations of the theory of interval-probability , 1995 .

[17]  J. Kacprzyk,et al.  Advances in the Dempster-Shafer theory of evidence , 1994 .

[18]  Luis M. de Campos,et al.  Probability Intervals: a Tool for uncertain Reasoning , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[19]  Eduard Kofler Prognosen und Stabilität bei unvollständiger Information , 1989 .

[20]  F. P. A. Coolen,et al.  Elementare Grundbegriffe einer Allgemeineren Wahrscheinlichkeitsrechnung, vol. I, Intervallwahrscheinlichkeit als Umfassendes Konzept , 2003 .

[21]  Kurt Weichselberger The theory of interval-probability as a unifying concept for uncertainty , 2000, Int. J. Approx. Reason..

[22]  Daphne Koller,et al.  Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence , 2001 .

[23]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[24]  Kurt Weichselberger,et al.  A Methodology for Uncertainty in Knowledge-Based Systems , 1990, Lecture Notes in Computer Science.