Planar designs for electromagnetically induced transparency in metamaterials.

We present a planar design of a metamaterial exhibiting electromagnetically induced transparency that is amenable to experimental verification in the microwave frequency band. The design is based on the coupling of a split-ring resonator with a cut-wire in the same plane. We investigate the sensitivity of the parameters of the transmission window on the coupling strength and on the circuit elements of the individual resonators, and we interpret the results in terms of two linearly coupled Lorentzian resonators. Our metamaterial designs combine low losses with the extremely small group velocity associated with the resonant response in the transmission window, rendering them suitable for slow light applications at room temperature.

[1]  Ferran Martin,et al.  On the resonances and polarizabilities of split ring resonators , 2005 .

[2]  I. Vitebskiy,et al.  Slow light in photonic crystals , 2005, physics/0504112.

[3]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[4]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[5]  U. Leonhardt,et al.  Transformation Optics and the Geometry of Light , 2008, 0805.4778.

[6]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[7]  Sébastien Guenneau,et al.  Acoustic metamaterials for sound focusing and confinement , 2007 .

[8]  Irina Veretennicoff,et al.  Negative diffraction pattern dynamics in nonlinear cavities with left-handed materials , 2006, 1003.0584.

[9]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[10]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[11]  Shuang Zhang,et al.  Optical negative index metamaterials with improved performance , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[12]  M. Kafesaki,et al.  Electric coupling to the magnetic resonance of split ring resonators , 2004 .

[13]  M. Wegener,et al.  Low-loss negative-index metamaterial at telecommunication wavelengths. , 2006, Optics letters.

[14]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[15]  M. Kafesaki,et al.  Multi-gap individual and coupled split-ring resonator structures. , 2008, Optics express.

[16]  C. Soukoulis,et al.  Low-loss metamaterials based on classical electromagnetically induced transparency. , 2008, Physical review letters.

[17]  A.C. Newell,et al.  Single-Negative, Double-Negative, and Low-index Metamaterials and their Electromagnetic Applications , 2007, IEEE Antennas and Propagation Magazine.

[18]  Irina Veretennicoff,et al.  Miniaturization of photonic waveguides by the use of left-handed materials , 2008 .

[19]  Olivier J. F. Martin,et al.  Electromagnetic resonances in individual and coupled split-ring resonators , 2002 .

[20]  David R. Smith,et al.  Electromagnetic parameter retrieval from inhomogeneous metamaterials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Sailing He Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. By Christophe Caloz and Tatsuo Itoh. , 2007 .

[22]  D. R. Smith,et al.  Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials , 2004, cond-mat/0411590.

[23]  C M Soukoulis,et al.  Effective medium theory of left-handed materials. , 2004, Physical review letters.

[24]  David R. Smith,et al.  Homogenization of metamaterials by field averaging (invited paper) , 2006 .

[25]  Eleftherios N. Economou,et al.  Negative‐Index Materials: New Frontiers in Optics , 2006 .

[26]  David R. Smith,et al.  Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations , 2007, 0706.2452.

[27]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[28]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[29]  N. Engheta,et al.  An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability , 2002, IEEE Antennas and Wireless Propagation Letters.

[30]  A. Toscano,et al.  Design of Spiral and Multiple Split-Ring Resonators for the Realization of Miniaturized Metamaterial Samples , 2007, IEEE Transactions on Antennas and Propagation.

[31]  N. Zheludev,et al.  Metamaterial analog of electromagnetically induced transparency. , 2008, Physical review letters.

[32]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[33]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.