Automatic Geolocation Correction of Satellite Imagery

Modern satellites tag their images with geolocation information using GPS and star tracking systems. Depending on the quality of the geopositioning equipment, errors may range from a few meters to tens of meters on the ground. At the current state of art, there is no established method to automatically correct these errors limiting the large-scale joint utilization of cross-platform satellite images. In this paper, an automatic geolocation correction framework that corrects images from multiple satellites simultaneously is presented. As a result of the proposed correction process, all the images are effectively registered to the same absolute geodetic coordinate frame. The usability and the quality of the correction framework are demonstrated through a 3-D surface reconstruction application. The 3-D surface models given by original satellite geopositioning metadata, and the corrected metadata, are compared. The quality difference is measured through an entropy-based metric applied to the orthographic height maps given by the 3-D surface models. Measuring the absolute accuracy of the framework is harder due to lack of publicly available high-precision ground surveys. However, the geolocation of images of exemplar satellites from different parts of the globe are corrected, and the road networks given by OpenStreetMap are projected onto the images using original and corrected metadata to demonstrate the improved quality of alignment.