Bayesian Mitigation of Sensor Position Errors to Improve Unexploded Ordnance Detection

Phenomenological modeling coupled with statistical signal processing has been shown to significantly improve capabilities for discriminating unexploded ordnance (UXO) from benign clutter using electromagnetic induction (EMI) sensor data. The general premise underlying the majority of these coupled approaches is that a phenomenological model is fit to the measured data, and the parameters estimated from this model inversion, which characterize the interrogated target, are utilized in subsequent statistical signal processing algorithms to classify the target as either UXO or clutter. A potential limitation of this coupled approach is that the inversion has been shown to be sensitive to uncertainty associated with the sensor positions. When the measurement positions are uncertain, the inversion results are more variable, and consequently, discrimination performance degrades. In this letter, a Bayesian methodology is applied to estimate the desired features from the measured data. This method explicitly acknowledges that uncertainty in the sensor positions exists and incorporates this knowledge to find the maximum-likelihood feature estimates by integrating over the uncertain measurement positions. Due to the high dimensionality of the integration, Monte Carlo integration, a statistical technique to estimate the value of an integral, is employed. Simulation results show that this Bayesian approach in mitigating sensor position uncertainty produces features with lower variability and, therefore, provides improved discrimination performance.

[1]  Thomas H. Bell,et al.  Subsurface discrimination using electromagnetic induction sensors , 2001, IEEE Trans. Geosci. Remote. Sens..

[2]  V. Torczon,et al.  Direct search methods: then and now , 2000 .

[3]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[4]  Leslie M. Collins,et al.  A comparison of the performance of statistical and fuzzy algorithms for unexploded ordnance detection , 2001, IEEE Trans. Fuzzy Syst..

[5]  J. J. Moré,et al.  Levenberg--Marquardt algorithm: implementation and theory , 1977 .

[6]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[7]  Carl E. Baum Discrimination of buried targets via the singularity expansion , 1997 .

[8]  Stacy L. Tantum,et al.  Tracking and localizing a moving source in an uncertain shallow water environment , 1998 .

[9]  J. T. Smith,et al.  Resolution depths for some transmitter-receiver configurations , 2002, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Y. Das,et al.  Analysis of an electromagnetic induction detector for real-time location of buried objects , 1990 .

[11]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[12]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[13]  L. Peters,et al.  Buried unexploded ordnance identification via complex natural resonances , 1997 .

[14]  Leslie M. Collins,et al.  Unexploded ordnance detection using Bayesian physics-based data fusion , 2003, Integr. Comput. Aided Eng..

[15]  Leslie M. Collins,et al.  Sensing of unexploded ordnance with magnetometer and induction data: theory and signal processing , 2003, IEEE Trans. Geosci. Remote. Sens..

[16]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[17]  I. J. Won,et al.  Characterization of UXO-like targets using broadband electromagnetic induction sensors , 2003, IEEE Trans. Geosci. Remote. Sens..

[18]  Stephen J. Norton,et al.  Identification of buried unexploded ordnance from broadband electromagnetic induction data , 2001, IEEE Trans. Geosci. Remote. Sens..

[19]  V. L. Anderson Evolutionary Operation : A Method for Increasing Industrial Productivity , 1970 .

[20]  Bruce Barrow,et al.  Model-based characterization of electromagnetic induction signatures obtained with the MTADS electromagnetic array , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  Thomas H. Bell,et al.  Simple phenomenological models for wideband frequency-domain electromagnetic induction , 2001, IEEE Trans. Geosci. Remote. Sens..

[22]  J. T. Smith,et al.  Optimizing receiver configurations for resolution of equivalent dipole polarizabilities in situ , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Yacine Dalichaouch,et al.  On the wideband EMI response of a rotationally symmetric permeable and conducting target , 2001, IEEE Trans. Geosci. Remote. Sens..

[24]  Leslie M. Collins,et al.  Classification of landmine-like metal targets using wideband electromagnetic induction , 2000, IEEE Trans. Geosci. Remote. Sens..

[25]  D. Oldenburg,et al.  A Discrimination Algorithm for UXO Using Time Domain Electromagnetics , 2001 .

[26]  Irma Shamatava,et al.  A Fast Forward Model for Simulating EMI Scattering with Realistic Sensors and Elongated Objects , 2003 .

[27]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[28]  Jin Au Kong,et al.  Application of a spheroidal-mode approach and a differential evolution algorithm for inversion of magneto-quasistatic data in UXO discrimination , 2004 .

[29]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[30]  Loren W. Nolte,et al.  COMPUTATIONALLY EFFICIENT MONTE CARLO ESTIMATION ALGORITHMS FOR MATCHED FIELD PROCESSING IN UNCERTAIN OCEAN ENVIRONMENTS , 1994 .