Minimizing Basel III Capital Requirements with Unconditional Coverage Constraint

The new Basel III framework increases the banks' market risk capital requirements. In this paper, we introduce a new risk management approach based on the unconditional coverage test to minimize the regulatory capital requirements. Portfolios optimized with our new minimum capital constraint successfully reduce the Basel III market risk capital requirements. In general, portfolios with value-at-risk and conditional-value-at-risk objective functions and underlying empirical distribution yield better portfolio risk profiles and have lower capital requirements. For the optimization we use the threshold-accepting heuristic and the common trust-region search method.

[1]  T. Coleman,et al.  Minimizing CVaR and VaR for a portfolio of derivatives , 2006 .

[2]  D. Tasche,et al.  On the coherence of expected shortfall , 2001, cond-mat/0104295.

[3]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[4]  Michael McAleer,et al.  A decision rule to minimize daily capital charges in forecasting value-at-risk , 2010 .

[5]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[6]  A. Roy Safety first and the holding of assetts , 1952 .

[7]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[8]  Richard H. Byrd,et al.  A Trust Region Algorithm for Nonlinearly Constrained Optimization , 1987 .

[9]  Manfred Gilli,et al.  The Threshold Accepting Heuristic for Index Tracking , 2001 .

[10]  Peter Winker,et al.  THE HIDDEN RISKS OF OPTIMIZING BOND PORTFOLIOS UNDER VAR , 2007 .

[11]  Mehdi Mostowfi,et al.  Minimum-Variance Portfolios Based on CovarianceMatrices Using Implied Volatilities: Evidence from the German Market , 2013, The Journal of Portfolio Management.

[12]  David H. Bailey,et al.  Pseudo-Mathematics and Financial Charlatanism: The Effects of Backtest Overfitting on Out-of-Sample Performance , 2014 .

[13]  A. Lucas,et al.  Extreme Returns, Downside Risk, and Optimal Asset Allocation , 1998 .

[14]  F. Nogales,et al.  Optimal Portfolios with Minimum Capital Requirements , 2010 .

[15]  Enrico Schumann,et al.  Numerical Methods and Optimization in Finance , 2011 .

[16]  Peter Winker,et al.  New concepts and algorithms for portfolio choice , 1992 .

[17]  D. Tasche,et al.  Expected Shortfall: a natural coherent alternative to Value at Risk , 2001, cond-mat/0105191.

[18]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[19]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[20]  Shu Yan,et al.  Mean¿variance portfolio selection with ¿at-risk¿ constraints and discrete distributions. , 2007 .

[21]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[22]  Enrique Sentana Mean-Variance Portfolio Allocation with a Value at Risk Constraint , 2001 .

[23]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[24]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[25]  Manfred Gilli,et al.  A Data-Driven Optimization Heuristic for Downside Risk Minimization , 2006 .

[26]  V. Bawa OPTIMAL, RULES FOR ORDERING UNCERTAIN PROSPECTS+ , 1975 .

[27]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[28]  M. Pritsker Evaluating Value at Risk Methodologies: Accuracy versus Computational Time , 1996 .